In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nin...To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nine points by the borehole stress-relief method. The results of strain?confining pressure curves show that rock masses at the three measuring sites exhibit comprehensive linear elasticity in spite of various fissures or cracks within rocks. Horizontal and vertical stress components distribute discrepantly near the fault areas, and the maximum lateral pressure coefficient is as high as 6.15. The maximum principle stress ranges from 8.01 to 14.93 MPa, and stress directions are in the range of N78.07°W?N17.55°W. Geostresses near fault areas are dominated by the horizontal tectonic stresses, while the lower values, compared to those under similar geological conditions are due to stress release by the fault. Additionally, the fault and shear stress nearby are partially responsible for asymmetric elongation and southwesterly migration of orebodies.展开更多
Most of the coal reservoirs in China are of low-permeability, so hydraulic fracturing is widely used to improve the per- meability in the extraction of gas by ground drilling. The ground stress around the well was ana...Most of the coal reservoirs in China are of low-permeability, so hydraulic fracturing is widely used to improve the per- meability in the extraction of gas by ground drilling. The ground stress around the well was analyzed by using theory of elasticity. The pressure when the well fractured is formulated and the effect of ground stress on pressure is discussed. The effect of ground-stress-differences on hydraulic fracturing was analyzed by using the numerical software RFPA2D-Flow in reference to the tectonic stress in Jincheng coal area. The results show that: 1) the position where initial fracture appears is random and fracture branches emerge when the fractures expand if ground stresses in any two directions within a horizontal plane are equal; 2) other- wise, the fractures expand in general along the direction of maximum ground stress and the critical pressure decreases with in- creasing ground-stress-differences and 3) the preferred well-disposition pattern is diamond shaped. The preferred well spacing is 250 m×300 m. This study can provide a reference for the design of wells.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investi...A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.展开更多
The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for por...The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.展开更多
A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It cons...A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It consisted of applying a water volume with a tracer ion on top of an undisturbed ring sample on a pressure plate under a known suction or pressure head. Afterwards, soil water mobility was determined by analyzing the tracer-ion concentration in the soil sample. Soil water mobility showed to be a function of the applied water volume. No relation between soil water mobility and applied pressure head could be established with data from the present cxperiment. A simple one- or two-parameter equation can be fitted to the experimental data to parameterize soil water mobility as a function of applied solute volume. Sandy soils showed higher mobility than loamy" soils at low values of applied solute volumes, and both sandy and loamy soils showed an almost complete mobility at high applied solute volumes.展开更多
A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand a...A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand and Biot dynamic coupled theory,the seismic analysis was carried out by using a dynamic effective stress finite element method under plane strain condition. A recent design study was illustrated in detail for a river earth embankment subjected to seismic excitation on the saturated deposits with liquefiable sands. Simulated results of the embankment foundation during liquefaction were obtained for acceleration,displacement,and excess pore water pressures,which were considered to yield useful results for earthquake geotechnical design. The results show that the foundation soil reaches a fully liquefied state with high excess pore pressure ratios approaching to 1.0 due to the earthquake shaking. At the end of the earthquake,the extensive liquefaction causes about 1.0 m lateral spreading at the toe and 60 cm settlement at the crest of the earth embankment.展开更多
Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,n...Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.展开更多
The coal-gas existing condition was ameliorated in the coal seams prone to coal-gas outburst adopting the mining method of protective strata.The gas volume and the gas pressure were reduced synchronously in the protec...The coal-gas existing condition was ameliorated in the coal seams prone to coal-gas outburst adopting the mining method of protective strata.The gas volume and the gas pressure were reduced synchronously in the protected coal seam,and the coal seam of high permeability prone to the coal-gas outburst was changed into that of low perme- ability with no proneness to the coal-gas outburst.The D_(15)coal seam was treated as the protective strata,and the D_(16-17)coal seam was treated as the protected strata in the Fifth coal mine in the Pingdingshan Coal Mining Group.The distance between the two coal seams was 5 m averagely,clarified into the extreme short-range protective strata.The numerical analysis was based on the theory of the porous media flow with the finite ele- ment method.The gas flow process and the change mechanism of the coal-gas pressure were analyzed in the process of mining the protective strata.展开更多
One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of att...One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of attention of many researchers. In this work, a one-dimensional consolidation apparatus was equipped in a way that pore water pressure and settlement could be continuously read and recorded during consolidation process under static loading. The end of primary consolidation was obtained using water pressure changes helping to present a new method for determining the end of primary consolidation and consolidation coefficient. This method was then compared with two classical theory methods of lg t and t. Using Terzaghi's theory, the way of pore pressure dissipation for lg t, t and the new method was found and compared with experimental results. It is concluded that the new method has better results.展开更多
The flowing mechanism of a low permeability gas reservoir is different from a conventional gas reservoir,especially for that with higher irreducible water saturation the threshold pressure gradient exists. At present,...The flowing mechanism of a low permeability gas reservoir is different from a conventional gas reservoir,especially for that with higher irreducible water saturation the threshold pressure gradient exists. At present,in all the deliverability equation,the additional pressure drop caused by the threshold pressure gradient is viewed as constant,but this method has big error in the practical application. Based on the non-Darcy steady flow equation,the limited integral of the additional pressure drop is solved in this paper and it is realized that the additional pressure drop is not a constant but has something to do with production data,and a new deliverability equation is derived,with the relevant processing method for modified isochronal test data. The new deliverability equation turns out to be practical through onsite application.展开更多
In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid)...In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid) model and a VOF (volume of fluid) method implemented in the CFD (computational fluid dynamics) software, FLUENT6.3.26. The 2F model gave good agreement with CCFL data in low pressure conditions but did not give good results for high pressure steam-water conditions. In the previous study, the computational grid and schemes were improved in the VOF method to improve calculations in circular tubes, and the calculated CCFL characteristics agreed well with the UPTF (Upper Plenum Test Facility) data at 1.5 MPa. In this study, therefore, using the 2F model and the computational grid previously improved for the VOF calculations, numerical simulations were conducted for steam-water flows at 1.5 MPa under PWR full-scale conditions. In the range of medium gas volumetric fluxes, the calculated CCFL characteristics agreed well with the values calculated by the VOF method and the UPTF data at 1.5 MPa. This indicated that the reference set of the interfacial drag correlations employed in this study could be applied not only to low pressures but also to high pressures.展开更多
Vacuum well point is a new but faint soft ground treatment method. This work focuses on the consolidation behavior of a reconstituted soft clayey specimen under vacuum well point combined with surcharge loading. The l...Vacuum well point is a new but faint soft ground treatment method. This work focuses on the consolidation behavior of a reconstituted soft clayey specimen under vacuum well point combined with surcharge loading. The laboratory test was conducted through a vacuum-surcharge consolidation apparatus, and the vacuum loading scheme was adopted for vacuum pressure application to investigate the vacuum effect on soil consolidation. In the testing process, some key parameters such as vacuum pressure, pore water pressure and settlement deformation were timely recorded. Furthermore, the water content, void ratio and permeability coefficient of samples collected after loading were measured to reflect the consolidation characteristics. By comparing with the membrane system and membraneless system, something different was found for the vacuum well point method. The results indicate that the consolidation behavior of an axisymmetric single vacuum well point is almost identical to the behavior of vacuum preloading combined with prefabricated vertical drain(PVD), except for the distribution of the vacuum pressure along the well drain due to the structure of the vacuum well point. And the vacuum well point method may be useful for the improvement of soft clayey deposit in a certain depth.展开更多
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金Projects(50934002,51104011)supported by the National Natural Science Foundation of ChinaProject(2012BAB08B02)supported by the National Key Technologies R&D Program during the 12th Five-year Plan of China
文摘To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nine points by the borehole stress-relief method. The results of strain?confining pressure curves show that rock masses at the three measuring sites exhibit comprehensive linear elasticity in spite of various fissures or cracks within rocks. Horizontal and vertical stress components distribute discrepantly near the fault areas, and the maximum lateral pressure coefficient is as high as 6.15. The maximum principle stress ranges from 8.01 to 14.93 MPa, and stress directions are in the range of N78.07°W?N17.55°W. Geostresses near fault areas are dominated by the horizontal tectonic stresses, while the lower values, compared to those under similar geological conditions are due to stress release by the fault. Additionally, the fault and shear stress nearby are partially responsible for asymmetric elongation and southwesterly migration of orebodies.
基金Projects 2007CB209400 supported by the National Basic Research Program of China50490273 by the National Natural Science Foundation of China
文摘Most of the coal reservoirs in China are of low-permeability, so hydraulic fracturing is widely used to improve the per- meability in the extraction of gas by ground drilling. The ground stress around the well was analyzed by using theory of elasticity. The pressure when the well fractured is formulated and the effect of ground stress on pressure is discussed. The effect of ground-stress-differences on hydraulic fracturing was analyzed by using the numerical software RFPA2D-Flow in reference to the tectonic stress in Jincheng coal area. The results show that: 1) the position where initial fracture appears is random and fracture branches emerge when the fractures expand if ground stresses in any two directions within a horizontal plane are equal; 2) other- wise, the fractures expand in general along the direction of maximum ground stress and the critical pressure decreases with in- creasing ground-stress-differences and 3) the preferred well-disposition pattern is diamond shaped. The preferred well spacing is 250 m×300 m. This study can provide a reference for the design of wells.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
文摘A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.
文摘The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.
基金Coordenacao de Aperfeicoamento de Pessoal de Nível Superior (CAPNS), Brazil and Deutsche Forschungsgemeinschaft (DFG), Germany-Bilateral Cooperation Project 017/04
文摘A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It consisted of applying a water volume with a tracer ion on top of an undisturbed ring sample on a pressure plate under a known suction or pressure head. Afterwards, soil water mobility was determined by analyzing the tracer-ion concentration in the soil sample. Soil water mobility showed to be a function of the applied water volume. No relation between soil water mobility and applied pressure head could be established with data from the present cxperiment. A simple one- or two-parameter equation can be fitted to the experimental data to parameterize soil water mobility as a function of applied solute volume. Sandy soils showed higher mobility than loamy" soils at low values of applied solute volumes, and both sandy and loamy soils showed an almost complete mobility at high applied solute volumes.
基金Projects (40802070, 40841014) supported by the National Natural Science Foundation of ChinaProject (B308) supported by Shanghai Leading Academic Discipline Project, China
文摘A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand and Biot dynamic coupled theory,the seismic analysis was carried out by using a dynamic effective stress finite element method under plane strain condition. A recent design study was illustrated in detail for a river earth embankment subjected to seismic excitation on the saturated deposits with liquefiable sands. Simulated results of the embankment foundation during liquefaction were obtained for acceleration,displacement,and excess pore water pressures,which were considered to yield useful results for earthquake geotechnical design. The results show that the foundation soil reaches a fully liquefied state with high excess pore pressure ratios approaching to 1.0 due to the earthquake shaking. At the end of the earthquake,the extensive liquefaction causes about 1.0 m lateral spreading at the toe and 60 cm settlement at the crest of the earth embankment.
基金Project(2011J01308) supported by the Natural Science Foundation of Fujian Province,China
文摘Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.
基金the Grants of National Scientific Funds of Control Mechanism of Geologic Hazards Induced by Coal-gas(50534070)
文摘The coal-gas existing condition was ameliorated in the coal seams prone to coal-gas outburst adopting the mining method of protective strata.The gas volume and the gas pressure were reduced synchronously in the protected coal seam,and the coal seam of high permeability prone to the coal-gas outburst was changed into that of low perme- ability with no proneness to the coal-gas outburst.The D_(15)coal seam was treated as the protective strata,and the D_(16-17)coal seam was treated as the protected strata in the Fifth coal mine in the Pingdingshan Coal Mining Group.The distance between the two coal seams was 5 m averagely,clarified into the extreme short-range protective strata.The numerical analysis was based on the theory of the porous media flow with the finite ele- ment method.The gas flow process and the change mechanism of the coal-gas pressure were analyzed in the process of mining the protective strata.
文摘One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of attention of many researchers. In this work, a one-dimensional consolidation apparatus was equipped in a way that pore water pressure and settlement could be continuously read and recorded during consolidation process under static loading. The end of primary consolidation was obtained using water pressure changes helping to present a new method for determining the end of primary consolidation and consolidation coefficient. This method was then compared with two classical theory methods of lg t and t. Using Terzaghi's theory, the way of pore pressure dissipation for lg t, t and the new method was found and compared with experimental results. It is concluded that the new method has better results.
基金National Basic Research Program of China(2007CB209506)
文摘The flowing mechanism of a low permeability gas reservoir is different from a conventional gas reservoir,especially for that with higher irreducible water saturation the threshold pressure gradient exists. At present,in all the deliverability equation,the additional pressure drop caused by the threshold pressure gradient is viewed as constant,but this method has big error in the practical application. Based on the non-Darcy steady flow equation,the limited integral of the additional pressure drop is solved in this paper and it is realized that the additional pressure drop is not a constant but has something to do with production data,and a new deliverability equation is derived,with the relevant processing method for modified isochronal test data. The new deliverability equation turns out to be practical through onsite application.
文摘In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid) model and a VOF (volume of fluid) method implemented in the CFD (computational fluid dynamics) software, FLUENT6.3.26. The 2F model gave good agreement with CCFL data in low pressure conditions but did not give good results for high pressure steam-water conditions. In the previous study, the computational grid and schemes were improved in the VOF method to improve calculations in circular tubes, and the calculated CCFL characteristics agreed well with the UPTF (Upper Plenum Test Facility) data at 1.5 MPa. In this study, therefore, using the 2F model and the computational grid previously improved for the VOF calculations, numerical simulations were conducted for steam-water flows at 1.5 MPa under PWR full-scale conditions. In the range of medium gas volumetric fluxes, the calculated CCFL characteristics agreed well with the values calculated by the VOF method and the UPTF data at 1.5 MPa. This indicated that the reference set of the interfacial drag correlations employed in this study could be applied not only to low pressures but also to high pressures.
基金Projects(41202220,41472278)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2652012065)supported by the Fundamental Research Funds for Central Universities,China
文摘Vacuum well point is a new but faint soft ground treatment method. This work focuses on the consolidation behavior of a reconstituted soft clayey specimen under vacuum well point combined with surcharge loading. The laboratory test was conducted through a vacuum-surcharge consolidation apparatus, and the vacuum loading scheme was adopted for vacuum pressure application to investigate the vacuum effect on soil consolidation. In the testing process, some key parameters such as vacuum pressure, pore water pressure and settlement deformation were timely recorded. Furthermore, the water content, void ratio and permeability coefficient of samples collected after loading were measured to reflect the consolidation characteristics. By comparing with the membrane system and membraneless system, something different was found for the vacuum well point method. The results indicate that the consolidation behavior of an axisymmetric single vacuum well point is almost identical to the behavior of vacuum preloading combined with prefabricated vertical drain(PVD), except for the distribution of the vacuum pressure along the well drain due to the structure of the vacuum well point. And the vacuum well point method may be useful for the improvement of soft clayey deposit in a certain depth.