The mechanical dewatering of activated sludge is troublesome due to its high compressibility of solids. The dewatering can be enhanced dramatically by the use of electroosmosis,in which an electric field is applied to...The mechanical dewatering of activated sludge is troublesome due to its high compressibility of solids. The dewatering can be enhanced dramatically by the use of electroosmosis,in which an electric field is applied to the sludge cake.In this study,the influence of filter cloth on the cathode on the dewatering of activated sludge was investigated.It was found that thicker filter cloth led to lower water removal from the sludge cake,so a stainless steel cathode net with small pore size instead of filter cloth was applied,which improves the dewatering efficiency and reduces the electric power consumption.Moreover,water absorbent materials were helpful to remove the water from the sludge cake.For the electroosmotic dewatering at 7 kPa and 24 V·cm-1,the water content in the sludge cake decreased to 60%(by mass) with the average 0.075 kW·h·kg-1of water removed by using the cathode net.展开更多
Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage varia...Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage variable DTHM is dominated by TH coupling damage variable DTH, TM coupling damage variable DTM and HM coupling damage variable DHM, and DTH is firstly expressed in term of dimensionless total thermal conductivity of the water Nu. Permeability test, uni-axial compression test and THM coupling test are conducted to measure the permeability, elastic modulus and THM coupling stress-strain curves of brittle rock. The tested values of THM coupling elastic modulus E'HM are in good agreement with the predicted values of THM coupling elastic modulus ETHM, which can verify the newly established THM coupling damage model.展开更多
Radioactive waste disposal is important facility for human and environment in the world. Compacted bentonite in radioactive disposal engineer barrier design really experience hydration effort as decreasing of suction ...Radioactive waste disposal is important facility for human and environment in the world. Compacted bentonite in radioactive disposal engineer barrier design really experience hydration effort as decreasing of suction during long-time. Hydration effort develop macro-micro void structure in bentonite under deeply geological environment. The bentonite occurred uncertainly problems or translation in various experimental interaction boundary conditions such as thermal-hydration-chemical condition. To detect accumulation of deformation or changing of bentonite behaviour due to these processes is important that the modified experimental methods are required. In addition, to interpret laboratory experimental results combine to establish mathematical modelling in possible. The overall investigation or performance of the bentonite have contributed to represent the intrinsic properties of engineer barrier systems. This study focused on changing of properties of unsaturated compacted bentonite related to hydration effort due to increasing of relative humidity. Changing of some properties revealed to become instability or uncertainly problems in practice. Soil-water characteristic curve was measured with considering of various temperatures using vapor pressure technique. Swelling pressure and creep behaviour such as mechanical components were described with hydration effort.展开更多
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas...To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.展开更多
基金Supported by Tianjin Application Basis and Advanced Technology Studied Plans(09JCYBJC08200)
文摘The mechanical dewatering of activated sludge is troublesome due to its high compressibility of solids. The dewatering can be enhanced dramatically by the use of electroosmosis,in which an electric field is applied to the sludge cake.In this study,the influence of filter cloth on the cathode on the dewatering of activated sludge was investigated.It was found that thicker filter cloth led to lower water removal from the sludge cake,so a stainless steel cathode net with small pore size instead of filter cloth was applied,which improves the dewatering efficiency and reduces the electric power consumption.Moreover,water absorbent materials were helpful to remove the water from the sludge cake.For the electroosmotic dewatering at 7 kPa and 24 V·cm-1,the water content in the sludge cake decreased to 60%(by mass) with the average 0.075 kW·h·kg-1of water removed by using the cathode net.
基金Project(11072269) supported by the National Natural Science Foundation of ChinaProject(20090162110066) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage variable DTHM is dominated by TH coupling damage variable DTH, TM coupling damage variable DTM and HM coupling damage variable DHM, and DTH is firstly expressed in term of dimensionless total thermal conductivity of the water Nu. Permeability test, uni-axial compression test and THM coupling test are conducted to measure the permeability, elastic modulus and THM coupling stress-strain curves of brittle rock. The tested values of THM coupling elastic modulus E'HM are in good agreement with the predicted values of THM coupling elastic modulus ETHM, which can verify the newly established THM coupling damage model.
文摘Radioactive waste disposal is important facility for human and environment in the world. Compacted bentonite in radioactive disposal engineer barrier design really experience hydration effort as decreasing of suction during long-time. Hydration effort develop macro-micro void structure in bentonite under deeply geological environment. The bentonite occurred uncertainly problems or translation in various experimental interaction boundary conditions such as thermal-hydration-chemical condition. To detect accumulation of deformation or changing of bentonite behaviour due to these processes is important that the modified experimental methods are required. In addition, to interpret laboratory experimental results combine to establish mathematical modelling in possible. The overall investigation or performance of the bentonite have contributed to represent the intrinsic properties of engineer barrier systems. This study focused on changing of properties of unsaturated compacted bentonite related to hydration effort due to increasing of relative humidity. Changing of some properties revealed to become instability or uncertainly problems in practice. Soil-water characteristic curve was measured with considering of various temperatures using vapor pressure technique. Swelling pressure and creep behaviour such as mechanical components were described with hydration effort.
基金Project(LY13E080021) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2011A610072) supported by the Ningbo Municipal Natural Science Foundation,ChinaProject(XKL14D2063) supported by Subject Program of Ningbo University,China
文摘To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.