The LIVE (Late In-Vessel Phase Experiments) test program investigates in-vessel melt pool behaviour and cooling strategies for in-vessel corium retention during severe accidents in light water reactors (LWR). The ...The LIVE (Late In-Vessel Phase Experiments) test program investigates in-vessel melt pool behaviour and cooling strategies for in-vessel corium retention during severe accidents in light water reactors (LWR). The main part of the LIVE facility is a 1:5 scaled semi-spherical lower head of a typical pressurized water reactor. Up to now, LIVE experiments have been performed in different initial external cooling conditions, melt volumes and internal heat generations. At present the well-known simulant material KNO3-NaNO3 in non-eutectic composition (80 mole% KNO3-20 mole% NaNO3) and in eutectic composition (50 mole% KNO3- 50 mole% NaNO3) is used in the live program. The 3D heat flux distribution through vessel wall, melt pool temperature, crust thickness and the pool melt composition can be measured or determined. Extensive results have been obtained concerning the melt pool thermal hydraulic behaviour in transient and in steady state conditions.展开更多
文摘The LIVE (Late In-Vessel Phase Experiments) test program investigates in-vessel melt pool behaviour and cooling strategies for in-vessel corium retention during severe accidents in light water reactors (LWR). The main part of the LIVE facility is a 1:5 scaled semi-spherical lower head of a typical pressurized water reactor. Up to now, LIVE experiments have been performed in different initial external cooling conditions, melt volumes and internal heat generations. At present the well-known simulant material KNO3-NaNO3 in non-eutectic composition (80 mole% KNO3-20 mole% NaNO3) and in eutectic composition (50 mole% KNO3- 50 mole% NaNO3) is used in the live program. The 3D heat flux distribution through vessel wall, melt pool temperature, crust thickness and the pool melt composition can be measured or determined. Extensive results have been obtained concerning the melt pool thermal hydraulic behaviour in transient and in steady state conditions.