The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and ...The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.展开更多
Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in...Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in turn influence plant growth. The purpose of this study was to examine the effects of main vegetation types on soil moisture and its inter-annual change. Soil moisture in 0-10 m depth of six vegetation types, i.e., crop, grass, planted shrub of caragana, planted forests of arborvitae, pine and the mixture of pine and arborvitae were measured in 2001,2005 and 2006. Soil moisture in about 0-3 m of cropland and about 0-2 m of other vegetation types varied inter-annually dependent on annual precipitation, but was stable inter-annually below these depths. In 0-2 m, soil moisture of cropland was significantly greater than those of all other vegetation types, and there were no si nificant differences among other vegetation types. In 2-10 m, there was no significant mois- ture difference between cropland and grassland, but the soil moistures under both of them were significantly higher than those of planted shrub and forests. The planted shrub and forests had depleted soil moisture below 2 m to or near permanent wilting point, and there were no significant moisture differences among forest types. The soil moisture of caragana shrub was significantly lower than those of forests, but the absolute difference was very small. The results of this study implicated that the planted shrub and forests had depleted deep soil moisture to the lowest limits to which they could extract and they lived mainly on present year precipitation for transpiration.展开更多
基金Supported by 863 Program Item of Hi-tech Research Development Program of China Foundation under Grant No.2002AA602012-1.
文摘The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.
基金National Key Basic Research Special Foundation Project of China, No.2007CB407204National Natural Science Foundation of China, No.40471082
文摘Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in turn influence plant growth. The purpose of this study was to examine the effects of main vegetation types on soil moisture and its inter-annual change. Soil moisture in 0-10 m depth of six vegetation types, i.e., crop, grass, planted shrub of caragana, planted forests of arborvitae, pine and the mixture of pine and arborvitae were measured in 2001,2005 and 2006. Soil moisture in about 0-3 m of cropland and about 0-2 m of other vegetation types varied inter-annually dependent on annual precipitation, but was stable inter-annually below these depths. In 0-2 m, soil moisture of cropland was significantly greater than those of all other vegetation types, and there were no si nificant differences among other vegetation types. In 2-10 m, there was no significant mois- ture difference between cropland and grassland, but the soil moistures under both of them were significantly higher than those of planted shrub and forests. The planted shrub and forests had depleted soil moisture below 2 m to or near permanent wilting point, and there were no significant moisture differences among forest types. The soil moisture of caragana shrub was significantly lower than those of forests, but the absolute difference was very small. The results of this study implicated that the planted shrub and forests had depleted deep soil moisture to the lowest limits to which they could extract and they lived mainly on present year precipitation for transpiration.