In the context of remote sensing, sunlight penetration depth is the depth above which 90% of the diffusely reflected irradiance from a water body surface originates. Model algorithms to simulate water quality variable...In the context of remote sensing, sunlight penetration depth is the depth above which 90% of the diffusely reflected irradiance from a water body surface originates. Model algorithms to simulate water quality variables such as chlorophyll a, dissolved organic matter, suspended matter, and Secchi depth are sensitive to the variations of this variable. The penetration depth for Taihu Lake in China, a shallow and turbid lake, was calculated by using a multiple scattering model, and in situ optical measurements were carried out during May and October 2010. The results show that:1) the penetration depth generally increased from west to east during spring and from southeast to northwest during autumn, reflecting the prevailing wind direction and; 2) there was strong dependence of the penetration depth on the concentration of suspended matter.展开更多
Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growi...Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growing season 2006/2007 at a private farm in the Northern part of Jordan Valley (latitude: 32° 50′ N, longitude: 32° 50′ E, altitude: -254 m). Three levels of irrigation treatments (IT) were applied; namely 100%, 75% and 50% of reference evapotranspiration, representing over irrigation (OIT), full irrigation (FIT), and deficit irrigation (DIT), respectively. A drip irrigation using one irrigation source line with drippers spaced 0.5 m having average discharge of 2.3 L/hr at pressure 1.5 bar, was used. Stem water potential (SWP) at 100% over irrigation treatment (OIT) of navel orange trees had less negative value during the irrigation seasons (-1.57 MPa), whereas the highest negative value (-2.17 MPa) occurred at 50% deficit irrigation treatment (DIT).展开更多
Crop coefficients (Kc) of sugar beet were determined for accurate calculation of water requirements (CWR) and better irrigation water management. Three irrigation treatments were used during two seasons to measure...Crop coefficients (Kc) of sugar beet were determined for accurate calculation of water requirements (CWR) and better irrigation water management. Three irrigation treatments were used during two seasons to measure actual crop water use (ETc) under no soil stress treatment using gravimetric sampling. In the second season (SS), the method was modified to target 8 temporal points during crop growth for smooth calculation of ETc under sufficient moisture supply to avoid the distortion that was created by the continuous gravimetric sampling after, before and during each irrigation cycle on the experimental plots. Water was stopped when each targeted sampling point was reached using large plots where intensive sampling continues until the crop reaches severe water stress or permanent wilting point (PWP). The actual crop water use was extracted from the soil moisture depletion curve which allowed the identification of two clear segments. The first segment indicated crop water use during no water stress while the change of the slope indicated the beginning of the water stress. The reference crop evapotranspiration (ET0) was determined on daily basis using appropriate weather data that coincides with the ETc measurement and consequently the crop Kc were calculated. The results showed that the method used during the SS is easy and provides a better understanding of actual crop water use and better estimation of crop Kc. The calculated 10-day Kc values for sugar beet under heavy cracking clay soil conditions were: 0.46, 0.49, 0.53 and 0.60; for the initial stage: 0.69, 0.78, 0.88 and 0.97; for the development stage: 1.05, 1.11, 1.13, 1.11 and 1.04; for mid-season stage and for late season stage: 0.92, 0.74 and 0.60. Yield and other sugar related parameters were also presented for the two seasons.展开更多
基金Supported by the National Water Pollution Control and Management Technology Project of China (No.2012ZX07101-010)the National Natural Science Foundation of China (No.40701168)
文摘In the context of remote sensing, sunlight penetration depth is the depth above which 90% of the diffusely reflected irradiance from a water body surface originates. Model algorithms to simulate water quality variables such as chlorophyll a, dissolved organic matter, suspended matter, and Secchi depth are sensitive to the variations of this variable. The penetration depth for Taihu Lake in China, a shallow and turbid lake, was calculated by using a multiple scattering model, and in situ optical measurements were carried out during May and October 2010. The results show that:1) the penetration depth generally increased from west to east during spring and from southeast to northwest during autumn, reflecting the prevailing wind direction and; 2) there was strong dependence of the penetration depth on the concentration of suspended matter.
文摘Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growing season 2006/2007 at a private farm in the Northern part of Jordan Valley (latitude: 32° 50′ N, longitude: 32° 50′ E, altitude: -254 m). Three levels of irrigation treatments (IT) were applied; namely 100%, 75% and 50% of reference evapotranspiration, representing over irrigation (OIT), full irrigation (FIT), and deficit irrigation (DIT), respectively. A drip irrigation using one irrigation source line with drippers spaced 0.5 m having average discharge of 2.3 L/hr at pressure 1.5 bar, was used. Stem water potential (SWP) at 100% over irrigation treatment (OIT) of navel orange trees had less negative value during the irrigation seasons (-1.57 MPa), whereas the highest negative value (-2.17 MPa) occurred at 50% deficit irrigation treatment (DIT).
文摘Crop coefficients (Kc) of sugar beet were determined for accurate calculation of water requirements (CWR) and better irrigation water management. Three irrigation treatments were used during two seasons to measure actual crop water use (ETc) under no soil stress treatment using gravimetric sampling. In the second season (SS), the method was modified to target 8 temporal points during crop growth for smooth calculation of ETc under sufficient moisture supply to avoid the distortion that was created by the continuous gravimetric sampling after, before and during each irrigation cycle on the experimental plots. Water was stopped when each targeted sampling point was reached using large plots where intensive sampling continues until the crop reaches severe water stress or permanent wilting point (PWP). The actual crop water use was extracted from the soil moisture depletion curve which allowed the identification of two clear segments. The first segment indicated crop water use during no water stress while the change of the slope indicated the beginning of the water stress. The reference crop evapotranspiration (ET0) was determined on daily basis using appropriate weather data that coincides with the ETc measurement and consequently the crop Kc were calculated. The results showed that the method used during the SS is easy and provides a better understanding of actual crop water use and better estimation of crop Kc. The calculated 10-day Kc values for sugar beet under heavy cracking clay soil conditions were: 0.46, 0.49, 0.53 and 0.60; for the initial stage: 0.69, 0.78, 0.88 and 0.97; for the development stage: 1.05, 1.11, 1.13, 1.11 and 1.04; for mid-season stage and for late season stage: 0.92, 0.74 and 0.60. Yield and other sugar related parameters were also presented for the two seasons.