The vibrational state-selected population transfer from a highly vibrationally excited level to the ground level is of great importance in the preparation of ultra-cold molecules. By using the time-dependent quantum-w...The vibrational state-selected population transfer from a highly vibrationally excited level to the ground level is of great importance in the preparation of ultra-cold molecules. By using the time-dependent quantum-wave-packet method, the population transfer dynamics is investigated theoretically for the HF molecule. A double-E-type laser scheme is proposed to transfer the population from the |v=16〉 level to the ground vibrational level |v=0〉 on the ground electronic state. The scheme consists of two steps: The first step is to transfer the population from |v=16〉 to |v=7〉 via an intermediate level |v=11〉, and the second one is to transfer the population from |v=7〉 to |v=0〉 via |v=3〉. In each step, three vibrational levels form a E-type population transfer path under the action of two temporally overlapped laser pulses. The maximal population-transfer efficiency is obtained by optimizing the laser inten- sities, frequencies, and relative delays. Cases for the pulses in intuitive and counterintuitive sequences are both calculated and compared. It is found that for both cases the population can be efficiently (over 90%) transferred from the |v=-16〉 level to the |v=0〉 level.展开更多
Nitrogen and phosphorus contents are analyzed in the overlying waters and pore waters taken from the Changjiang Estuary and Shanghai coastal tidal flats in this study. In addition, the diffusion fluxes of nitrogen and...Nitrogen and phosphorus contents are analyzed in the overlying waters and pore waters taken from the Changjiang Estuary and Shanghai coastal tidal flats in this study. In addition, the diffusion fluxes of nitrogen and phosphorus across the sediment-water interface in tidal flats are estimated according to the nutrient concentration gradients at the interface. It has been indicated that the concentrations of ammonium, nitrite, nitrate and dissolved phosphorus in overlying waters range from 0.0082-2.56, 0.03-0.58, 0.69-5.38 and 0.035-0.53 mg/L, respectively, while 0.0025 - 1.35 mg /L for NH^-N, 0. 0055 ~0.20mg/L for NO2-N, 0.61-1.14 mg/L for NO3-N and 0.11~0.53mg/L for DP insurface pore waters.The findings have revealed that ammonium, nitrite, nitrate and dissolved phosphorus diffusionfluxes across the sediment-water interface are between -0.024~0.99, -0.39~ -0.0019, -3.09--0.12 and -0.48- 0.12 ug/ (cm.d ) respectively, showing that the sediment in tidal flats is the source of phosphorus and an important sink for nitrogen in the waters.展开更多
This paper introduces Vietnam's climate condition,main rice production regions and analyses the expansion of rice planting area,rice cropping system during the last decades.The result from the change of rice produ...This paper introduces Vietnam's climate condition,main rice production regions and analyses the expansion of rice planting area,rice cropping system during the last decades.The result from the change of rice production,planting area,yield,and rice trade indicates that the economic reforms in Vietnam from 1986 have contributed to a spectacular rise in rice production and exports.However,there are still problems and opportunities for rice production and export in Vietnam.The paper suggests that Vietnam should make the most use of the advanced international rice cultivars and technology to improve irrigation and water conservancy facilities to benefit rice farmer and consolidate Vietnam to be the major exporter of rice in the world market.展开更多
Shoaling is a common type of sedimentation in the evolution of carbonate platform,and commonly has poor continuity.This paper presents a newly discovered and rare type of shoaling,i.e.,mega-shoaling in nearly basin sc...Shoaling is a common type of sedimentation in the evolution of carbonate platform,and commonly has poor continuity.This paper presents a newly discovered and rare type of shoaling,i.e.,mega-shoaling in nearly basin scale,which is developed in the Middle Triassic Leikoupo Formation of the Sichuan Basin,southwest China.During the Leikoupo time,the studied Sichuan Basin experienced hot and dry climate conditions and developed a carbonate platform within a restricted epicontinental sea.In B sub-layer of the Lei-1-1 sub-member of the Leikoupo Formation a series of grainstones of shoal facies accumulated throughout almost the entire basin,thereby generating features associated with basin-scale mega-shoaling.By detailed core examination and microscopic observation of thin sections,it is shown that the lithology of this set of grainstones is dominated by doloarenite(calcarenite)followed by oolitic dolomite(limestone).In addition,it contains three types of sedimentary sequences characterized by upward-coarsening and upward-shallowing as the followings:restricted lagoon to platform interior beach;restricted lagoon to platform interior beach and to platform flat;and tidal flat to peritidal beach.Subsequently,a multicyclic stratigraphic division and correlation revealed that this set of grainstones can be well traced and compared horizontally,and is generally isochronous.In addition,a template for logging facies,established based on core calibrations and logging data,was employed to analyze the 235 wells in the basin.The results demonstrate the shoal grainstones to be 10–40 m thick with a15×104km2continuous distribution area.These findings indicate that the carbonate platform developed mega-shoals within a short period of time.The genesis of such a mega-shoaling was investigated by focusing on various shoaling conditions,such as paleo-tectonics,paleo-geomorphology,paleo-climate,sea-level changes,and palaeo-hydrodynamics.A specific combination of independent geological factors creates beneficial geomorphologic conditions for the mega-shoaling including a quiescent paleo-tectonic environment,relatively flat paleo-geomorphology and evaporites filling up and leveling off.In addition,a stably settling carbonate platform underwent sea-level fluctuations through swift transgressions and protracted regressions,which is not only conducive to continuous,multicyclic and superimposed vertical development of grain beaches but also beneficial for the horizontal migration,coalescence and superimposition of individual grain beaches.As a consequence,large-scale and continuously-distributed grain beach sedimentation emerges and mega-shoals develop.展开更多
基金Li-hang Li thanks Dr. Yin Huang for assistance. The project is supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No.20130041120053), SRF for ROCS, SEM, the Sci- ence and Technology Research Funds of the Depart- ment of Education of Liaoning Province (L2013014), the National Magnetic Confinement Fusion Science Pro- gram (No.2013GB109005), the Fundamental Research Funds for the Central Universities (DUT12RC(3)60), and the NationM Natural Science Foundation of China (No.21473018, No.10974024, and No.11274056).
文摘The vibrational state-selected population transfer from a highly vibrationally excited level to the ground level is of great importance in the preparation of ultra-cold molecules. By using the time-dependent quantum-wave-packet method, the population transfer dynamics is investigated theoretically for the HF molecule. A double-E-type laser scheme is proposed to transfer the population from the |v=16〉 level to the ground vibrational level |v=0〉 on the ground electronic state. The scheme consists of two steps: The first step is to transfer the population from |v=16〉 to |v=7〉 via an intermediate level |v=11〉, and the second one is to transfer the population from |v=7〉 to |v=0〉 via |v=3〉. In each step, three vibrational levels form a E-type population transfer path under the action of two temporally overlapped laser pulses. The maximal population-transfer efficiency is obtained by optimizing the laser inten- sities, frequencies, and relative delays. Cases for the pulses in intuitive and counterintuitive sequences are both calculated and compared. It is found that for both cases the population can be efficiently (over 90%) transferred from the |v=-16〉 level to the |v=0〉 level.
基金The work is supported by the National Natural Science Foundation of China(Grant Nos.430100203 and 49801018)the Foundation for University Key Teachers by the Ministry of Education of China.
文摘Nitrogen and phosphorus contents are analyzed in the overlying waters and pore waters taken from the Changjiang Estuary and Shanghai coastal tidal flats in this study. In addition, the diffusion fluxes of nitrogen and phosphorus across the sediment-water interface in tidal flats are estimated according to the nutrient concentration gradients at the interface. It has been indicated that the concentrations of ammonium, nitrite, nitrate and dissolved phosphorus in overlying waters range from 0.0082-2.56, 0.03-0.58, 0.69-5.38 and 0.035-0.53 mg/L, respectively, while 0.0025 - 1.35 mg /L for NH^-N, 0. 0055 ~0.20mg/L for NO2-N, 0.61-1.14 mg/L for NO3-N and 0.11~0.53mg/L for DP insurface pore waters.The findings have revealed that ammonium, nitrite, nitrate and dissolved phosphorus diffusionfluxes across the sediment-water interface are between -0.024~0.99, -0.39~ -0.0019, -3.09--0.12 and -0.48- 0.12 ug/ (cm.d ) respectively, showing that the sediment in tidal flats is the source of phosphorus and an important sink for nitrogen in the waters.
基金Supported by the National Natural Science Foundation of China(30771160)Central Public-interest Scientific Institution Basal Research Fund(2009RG005-6)~~
文摘This paper introduces Vietnam's climate condition,main rice production regions and analyses the expansion of rice planting area,rice cropping system during the last decades.The result from the change of rice production,planting area,yield,and rice trade indicates that the economic reforms in Vietnam from 1986 have contributed to a spectacular rise in rice production and exports.However,there are still problems and opportunities for rice production and export in Vietnam.The paper suggests that Vietnam should make the most use of the advanced international rice cultivars and technology to improve irrigation and water conservancy facilities to benefit rice farmer and consolidate Vietnam to be the major exporter of rice in the world market.
基金supported by National Basic Research Program of China(Grant No.2012CB214803)PetroChina Scientific Innovative Foundation(Grant No.2011D-5006-0105)Key Subject Construction Project of Sichuan Province,China(Grant No.SZD0414)
文摘Shoaling is a common type of sedimentation in the evolution of carbonate platform,and commonly has poor continuity.This paper presents a newly discovered and rare type of shoaling,i.e.,mega-shoaling in nearly basin scale,which is developed in the Middle Triassic Leikoupo Formation of the Sichuan Basin,southwest China.During the Leikoupo time,the studied Sichuan Basin experienced hot and dry climate conditions and developed a carbonate platform within a restricted epicontinental sea.In B sub-layer of the Lei-1-1 sub-member of the Leikoupo Formation a series of grainstones of shoal facies accumulated throughout almost the entire basin,thereby generating features associated with basin-scale mega-shoaling.By detailed core examination and microscopic observation of thin sections,it is shown that the lithology of this set of grainstones is dominated by doloarenite(calcarenite)followed by oolitic dolomite(limestone).In addition,it contains three types of sedimentary sequences characterized by upward-coarsening and upward-shallowing as the followings:restricted lagoon to platform interior beach;restricted lagoon to platform interior beach and to platform flat;and tidal flat to peritidal beach.Subsequently,a multicyclic stratigraphic division and correlation revealed that this set of grainstones can be well traced and compared horizontally,and is generally isochronous.In addition,a template for logging facies,established based on core calibrations and logging data,was employed to analyze the 235 wells in the basin.The results demonstrate the shoal grainstones to be 10–40 m thick with a15×104km2continuous distribution area.These findings indicate that the carbonate platform developed mega-shoals within a short period of time.The genesis of such a mega-shoaling was investigated by focusing on various shoaling conditions,such as paleo-tectonics,paleo-geomorphology,paleo-climate,sea-level changes,and palaeo-hydrodynamics.A specific combination of independent geological factors creates beneficial geomorphologic conditions for the mega-shoaling including a quiescent paleo-tectonic environment,relatively flat paleo-geomorphology and evaporites filling up and leveling off.In addition,a stably settling carbonate platform underwent sea-level fluctuations through swift transgressions and protracted regressions,which is not only conducive to continuous,multicyclic and superimposed vertical development of grain beaches but also beneficial for the horizontal migration,coalescence and superimposition of individual grain beaches.As a consequence,large-scale and continuously-distributed grain beach sedimentation emerges and mega-shoals develop.