In this study, the genotypes of starch synthesis-related genes were systematically screened from different rice varieties using molecular markers. The results showed that starch synthesis-related genes were highly pol...In this study, the genotypes of starch synthesis-related genes were systematically screened from different rice varieties using molecular markers. The results showed that starch synthesis-related genes were highly polymorphic between indica and japonica varieties, as they greatly variated among indica varieties, but were conserved among japonica varieties. The genotypes of two indica varieties9311 and Minghui 63 were more similar to that of japonica varieties. Two or three alleles of six starch synthesis-related genes were found in 28 japonica parental varieties. Four genotypes of two soluble starch synthase genes, SSIIa and SSIIIa,were detected in 88 stable lines derived from the cross of Kanto 194/ Wujing 13 using molecular markers.展开更多
ZSM‐22 zeolite with different crystal lengths was prepared using a modified hydrothermal method. Rotation speed, Si/Al molar ratio and co‐solvent have important effects on the crystal size of ZSM‐22. The nanosized ...ZSM‐22 zeolite with different crystal lengths was prepared using a modified hydrothermal method. Rotation speed, Si/Al molar ratio and co‐solvent have important effects on the crystal size of ZSM‐22. The nanosized zeolite samples were characterized by X‐ray diffraction, X‐ray fluorescence, nitrogen adsorption, scanning electron microscopy, temperature‐programmed desorption of am‐monia and solid state nuclear magnetic resonance. The catalytic performance of nanosized ZSM‐22 was tested using the conversion of methanol. Compared to conventional ZSM‐22, the nanosized ZSM‐22 zeolite exhibited superior selectivity to ethylene and aromatics and lower selectivity to propylene. Stability against deactivation was clearly shown by the nanosized ZSM‐22 zeolite. A higher external surface area and smaller particle size make this nanosized ZSM‐22 zeolite attractive for catalytic applications.展开更多
Using nickel(II) acetate.-2,2'-dipyridyl complex as template and N-vinyl-2-pyrrolidone (NVP) as coordinate functional monomer,.a new kind of metal-compiexing template molecularly impnnted polymer (MIP) was prep...Using nickel(II) acetate.-2,2'-dipyridyl complex as template and N-vinyl-2-pyrrolidone (NVP) as coordinate functional monomer,.a new kind of metal-compiexing template molecularly impnnted polymer (MIP) was prepared..The results of equilibri.um binding experiments in. aqueous solution showed that the MIP had higher'binding capacity for nickel( II )-2,2'-dipyridyl than the non-imprinted polymer with the same chemical composition. Theinfluences of metal ions and pHof solution on the recognition performance of MIP were investigated. The bindingcharacteristics of MIP were evaluated by the Scatchard analysis with one-site and two-site binding equations, respectively. The results on substrate selectivity of imprinted polymer revealed that MIP had better binding affinityfor template among thetested compounds.展开更多
Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffra...Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SIO2/A1203 molar ratio 21 25, KOH/SiO2 molar ratio 0.33 0.43, H20/SiO2 molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160℃, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.展开更多
Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation ha...Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation has been carried out to get the characteristics of the reactive distillation. Results from kinetic and thermodynamic analysis indicate that the optimal pressure of this reactive distillation process should be set to higher pressure such as 0.3 or 0.4 MPa. To avoid the recovery of cyclohexanol at the top of the column, an unreactive section should be allocated at the upper column. In addition, the inert component benzene is more unfavorable to the reactive distillation process in comparison with the inert cyclohexane.展开更多
A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self-...A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self- assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of the beta zeolite. The physical properties of the LS-BFMZ composite zeolite were characterized using various techniques, including XRD, IR and SEM techniques. Meanwhile, a possible mechanism regarding the formation of the LS-BFMZ composite zeolite was proposed.展开更多
Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison wit...Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison with the [C4C1im]Cl-water binary systems through attenuated total reflection infrared spectroscopy. Results indicated that the microstructures of water and [C4C1im]Cl changed with varying mole fraction of [C4C1im]Cl (xIL) from 0.01 to 1.0. This change was mainly attributed to the interactions of [C4C1im]Cl-water and the self-aggregation of [C4C1im]Cl through hydrogen bonding. The band shifts of C-H on imidazolium ring and the functional groups in 2,6-DMP indicated that the occurrence of intermolecular interactions by different mechanisms (i.e., hydrogen bonding or π-π stacking) resulted in 2,6-DMP dissolution. In the case of xIL=0.12, the slightly hydrogen-bonded water was fully destroyed and [C4C1im]Cl existed in the form of hydrated ion pairs. Interestingly, the maximum 2,6-DMP solubility (238.5 g/100 g) was achieved in this case. The interactions and microstructures of [C4C1im]Cl-water mixtures influenced the dissolution behavior of 2,6-DMP.展开更多
A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods....A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.展开更多
A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step am...A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step ammoniation was applied to recover high-quality silica. The recovered silica can be used to hydrothermal synthesize ZSM-5 zeolite without impurity phase contamination, which was confirmed by XRD, TG, SEM, BET and EDS characteristic techniques. It was found that with the increase of SiO_2/Al_2O_3 ratio and the extension of reaction time, the crystal type transform from the orthorhombic to the monoclinic phase. The impurity fluorine content of the recovered SiO_2 from H_2SiF_6 has great influence on the hydrothermal process for ZSM-5 crystal structure formation.Moreover, the increase of fluorine ions content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5. Catalytic properties of synthesized HZSM-5 with different SiO_2/Al_2O_3 ratio in transalkylation of toluene and 1,2,4-trimethylbenzene show good and stable catalytic performance. The ZSM-5 synthesized with recovered silica source exhibits similar catalyst life as the performance of small particle size HZSM-5, because the ZSM-5 synthesized with the silica source from industrial hexafluorosilicic acid prefers a thin disk crystal along the b axis direction, which shortens the diffusion distance of generated products.展开更多
The objective of this study is to investigate the differences in organic compounds that are present in hospital and municipal wastewater samples. Two samples with the same COD (chemical oxygen demand) values were ch...The objective of this study is to investigate the differences in organic compounds that are present in hospital and municipal wastewater samples. Two samples with the same COD (chemical oxygen demand) values were chosen for this study. The results have shown that both samples consist of the same compounds with low molecular weights and high polarities in high concentrations. The hospital wastewater consisted of more compounds arithmetically. Differences were found in the organic compound with low molecular weight and low polarities. Pharmaceutical compounds such as caffeine, acetanilide and phenacetin were detected only in the hospital wastewater.展开更多
基金Supported by the Agricultural Science Independent Innovation Foundation of Jiangsu Province[C X(12)1003]Key Technology Research and Development Program of Jiangsu Province(BE2013301)Earmarked Fund for China Agriculture Research System(CARS-01-47)~~
文摘In this study, the genotypes of starch synthesis-related genes were systematically screened from different rice varieties using molecular markers. The results showed that starch synthesis-related genes were highly polymorphic between indica and japonica varieties, as they greatly variated among indica varieties, but were conserved among japonica varieties. The genotypes of two indica varieties9311 and Minghui 63 were more similar to that of japonica varieties. Two or three alleles of six starch synthesis-related genes were found in 28 japonica parental varieties. Four genotypes of two soluble starch synthase genes, SSIIa and SSIIIa,were detected in 88 stable lines derived from the cross of Kanto 194/ Wujing 13 using molecular markers.
基金supported by the National Natural Science Foundation of China (21506202)~~
文摘ZSM‐22 zeolite with different crystal lengths was prepared using a modified hydrothermal method. Rotation speed, Si/Al molar ratio and co‐solvent have important effects on the crystal size of ZSM‐22. The nanosized zeolite samples were characterized by X‐ray diffraction, X‐ray fluorescence, nitrogen adsorption, scanning electron microscopy, temperature‐programmed desorption of am‐monia and solid state nuclear magnetic resonance. The catalytic performance of nanosized ZSM‐22 was tested using the conversion of methanol. Compared to conventional ZSM‐22, the nanosized ZSM‐22 zeolite exhibited superior selectivity to ethylene and aromatics and lower selectivity to propylene. Stability against deactivation was clearly shown by the nanosized ZSM‐22 zeolite. A higher external surface area and smaller particle size make this nanosized ZSM‐22 zeolite attractive for catalytic applications.
基金Supported by the Special Funds for Major State Basic Research Program of China(973 Project,No.2003CB615705).
文摘Using nickel(II) acetate.-2,2'-dipyridyl complex as template and N-vinyl-2-pyrrolidone (NVP) as coordinate functional monomer,.a new kind of metal-compiexing template molecularly impnnted polymer (MIP) was prepared..The results of equilibri.um binding experiments in. aqueous solution showed that the MIP had higher'binding capacity for nickel( II )-2,2'-dipyridyl than the non-imprinted polymer with the same chemical composition. Theinfluences of metal ions and pHof solution on the recognition performance of MIP were investigated. The bindingcharacteristics of MIP were evaluated by the Scatchard analysis with one-site and two-site binding equations, respectively. The results on substrate selectivity of imprinted polymer revealed that MIP had better binding affinityfor template among thetested compounds.
基金Supported by the National Natural Science Foundation of China(20976084,21101094,21136005)
文摘Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SIO2/A1203 molar ratio 21 25, KOH/SiO2 molar ratio 0.33 0.43, H20/SiO2 molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160℃, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.
文摘Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation has been carried out to get the characteristics of the reactive distillation. Results from kinetic and thermodynamic analysis indicate that the optimal pressure of this reactive distillation process should be set to higher pressure such as 0.3 or 0.4 MPa. To avoid the recovery of cyclohexanol at the top of the column, an unreactive section should be allocated at the upper column. In addition, the inert component benzene is more unfavorable to the reactive distillation process in comparison with the inert cyclohexane.
基金supported by the 973 plan item under Grants(2003CB615802)
文摘A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self- assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of the beta zeolite. The physical properties of the LS-BFMZ composite zeolite were characterized using various techniques, including XRD, IR and SEM techniques. Meanwhile, a possible mechanism regarding the formation of the LS-BFMZ composite zeolite was proposed.
基金This work was supported by the National Natural Science Foundation of China (No.21106011 and No.21276034) and the Program of Science and Technology of Liaoning Province (No.201602058), and China Scholarship Council.
文摘Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison with the [C4C1im]Cl-water binary systems through attenuated total reflection infrared spectroscopy. Results indicated that the microstructures of water and [C4C1im]Cl changed with varying mole fraction of [C4C1im]Cl (xIL) from 0.01 to 1.0. This change was mainly attributed to the interactions of [C4C1im]Cl-water and the self-aggregation of [C4C1im]Cl through hydrogen bonding. The band shifts of C-H on imidazolium ring and the functional groups in 2,6-DMP indicated that the occurrence of intermolecular interactions by different mechanisms (i.e., hydrogen bonding or π-π stacking) resulted in 2,6-DMP dissolution. In the case of xIL=0.12, the slightly hydrogen-bonded water was fully destroyed and [C4C1im]Cl existed in the form of hydrated ion pairs. Interestingly, the maximum 2,6-DMP solubility (238.5 g/100 g) was achieved in this case. The interactions and microstructures of [C4C1im]Cl-water mixtures influenced the dissolution behavior of 2,6-DMP.
文摘A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.
基金Supported by the National Natural Science Foundation of China(21306143)the Educational Commission of Hubei Province of China(D20161503)the Hubei Province Phosphorus Resource and Ethylene Project Downstream Exploitation Collaborative Innovation Center
文摘A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step ammoniation was applied to recover high-quality silica. The recovered silica can be used to hydrothermal synthesize ZSM-5 zeolite without impurity phase contamination, which was confirmed by XRD, TG, SEM, BET and EDS characteristic techniques. It was found that with the increase of SiO_2/Al_2O_3 ratio and the extension of reaction time, the crystal type transform from the orthorhombic to the monoclinic phase. The impurity fluorine content of the recovered SiO_2 from H_2SiF_6 has great influence on the hydrothermal process for ZSM-5 crystal structure formation.Moreover, the increase of fluorine ions content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5. Catalytic properties of synthesized HZSM-5 with different SiO_2/Al_2O_3 ratio in transalkylation of toluene and 1,2,4-trimethylbenzene show good and stable catalytic performance. The ZSM-5 synthesized with recovered silica source exhibits similar catalyst life as the performance of small particle size HZSM-5, because the ZSM-5 synthesized with the silica source from industrial hexafluorosilicic acid prefers a thin disk crystal along the b axis direction, which shortens the diffusion distance of generated products.
文摘The objective of this study is to investigate the differences in organic compounds that are present in hospital and municipal wastewater samples. Two samples with the same COD (chemical oxygen demand) values were chosen for this study. The results have shown that both samples consist of the same compounds with low molecular weights and high polarities in high concentrations. The hospital wastewater consisted of more compounds arithmetically. Differences were found in the organic compound with low molecular weight and low polarities. Pharmaceutical compounds such as caffeine, acetanilide and phenacetin were detected only in the hospital wastewater.