Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes we...Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.展开更多
Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as acceler...Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as accelerants for hydrate formation, on induction time. We experimented with three types of a Tween solution with equal concentrations of 0.001 mol/L (T40, T40/T80 (1:1), T40/T80 (4:1)). By means of visual experimental equipment, developed by us, we measured generalized induction time using a Direct Observation Method. The experimental data were analyzed combined with a mass transfer model and a hydrate crystal nuclei growth model. Our major conclusions are as follows: 1) solubilization of surfactants produces supersaturated gas molecules, which promotes the mass transfer from a bulk phase to hydrates and provides the driving force for the complexation between host molecules (water) and guest molecules in a gas hydrate formation process; 2) when the solution of the surfactant concentration exceeds the critical micelle concentration (CMC), the surfactant in an aqueous solution will transform to micelles. Most of the gas molecules are bound to form clusters with water molecules, which promotes the formation of crystal nuclei of gas hydrates; 3) the surfactant T40 proved to have more notable effects on the promotion of crystal nuclei formation and on shortening the induction time, compared with T40/T80 (1:1) and T40/T80 (4:1).展开更多
Hydration grossular and hematite monominerals were synthesized. The effects of dissolved organic compounds(including sodium formate, sodium acetate, sodium oxalate, sodium salicylate or disodium phthalate) on the sett...Hydration grossular and hematite monominerals were synthesized. The effects of dissolved organic compounds(including sodium formate, sodium acetate, sodium oxalate, sodium salicylate or disodium phthalate) on the settling performance of hydration grossular or hematite slurries were studied. The settling of the slurries was also investigated with the addition of sodium polyacrylate(PAAS) or hydroxamated polyacrylamide flocculant(HCPAM). The adsorption mechanism of organic compounds on monominerals surfaces was studied by FT-IR and XPS, respectively. A deterioration in settling is observed in order of disodium phthalate>sodium salicylate>sodium oxalate>sodium formate(or sodium acetate). Moreover, PAAS can efficiently eliminate the negative effects of organic compounds on the settling performance of the hydration grossular slurry. HCPAM can efficiently eliminate the negative effects of sodium formate, sodium acetate and sodium oxalate on the settling performance of the hematite slurry, but it only partially improves the settling performance of hematite slurry containing sodium salicylate or disodium phthalate. FT-IR and XPS results show that organic compounds are physically adsorbed on hydration grossular surface, and chemisorptions of organic compounds occur on hematite surface with a bidentate chelating complex.展开更多
The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carrie...The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment.展开更多
Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation ch...Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.展开更多
Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes we...Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.展开更多
The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. Th...The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. The experimental results indicate that the water penetration depth, chloride ion transportation depth, and the concentration of chloride ion ingression into concrete increase with raised hydraulic pressure and hold press period. But the chloride ion transportation velocity is only 53% of that of water when concrete specimens are under hydraulic pressure. The chloride transportation coefficient of concrete decreases with hold press period as power function. And that would increase 500% 600% in chloride transportation coefficient when the hydraulic pressure increases from 0 to 1.2 MPa. The hydraulic pressure also decreases the bound chloride ion of concrete to about zero. Besides, the low water-cementitions materials and suitable content of mineral admixture(including fly ash and slag) improve the resistance capacity of chloride penetration, and binding capacity of concrete under hydraulic pressure.展开更多
The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self...The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.展开更多
Influence of ultrafine active mineral (DK mineral) on mechanical property of fly ash based load bearing aerocrete was analyzed. The result shows that the addition of DK mineral in a suitable amount can enhance obvious...Influence of ultrafine active mineral (DK mineral) on mechanical property of fly ash based load bearing aerocrete was analyzed. The result shows that the addition of DK mineral in a suitable amount can enhance obviously the compressive strength of aerocrete. According to the SEM EDS and X ray diffraction analyses, the crystal shapes of hydration products are well developed and interlocked for samples containing DK mineral. Its microstructure is denser than that of the samples without DK mineral. Having a good activation, the DK mineral makes both the type and the quantity of hydrated products be obviously superior to that of the contrast sample.展开更多
This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mu...This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.展开更多
This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive str...This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive strength of geopolymer concretes were studied. The geopolymer concrete were prepared from Mae Moh fly ash with sodium silicate (Na2SiO3) and sodium hydroxide (Na(OH)) solutions. In the first group, concentration of Na(OH) was varied at 8, 10, 12, and 14 molar and the Si/AI ratio was kept constant at 1.98. In the second group, a concentration of Na(OH) was kept constant at 14 molar and the Si/AI ratio was varied at 2.2, 2.4, 2.6, and 2.8. The hardened concretes were air-cured in laboratory. The compressive strength and water permeability were tested at the age of 28 and 60 days. The results showed that compressive strengths of geopolymer concrete significantly increased with the increase of a concentration of Na(OH) and Si/AI ratio. The water permeability coefficients increase with the decrease of compressive strength. In addition, the high reduction of water permeability coefficients with time was found in geopolymer concrete with lower Na(OH) concentration than that higher Na(OH) concentration.展开更多
Two CaCO3-based materials (limestone and clamshells) and steel slag were used as mineral admixtures in cement to produce ternary blends and their influences on hydration and portlandite formation were analyzed. Addi...Two CaCO3-based materials (limestone and clamshells) and steel slag were used as mineral admixtures in cement to produce ternary blends and their influences on hydration and portlandite formation were analyzed. Additionally, mechanical properties were determined. These properties were determined using X-ray diffraction and scanning electron microscopic/energy dispersive X-ray analytical techniques as well as applying methods specified by EN (European Standards) and ASTM (American Standards for Testing and Materials). The portlandite (Ca(OH)E) content was considerably reduced from 36.9% of reference cement to between 13.79% and 15.5%. With the water demand and setting times of the cements containing up to 10%, admixtures did not change significantly. The mechanical tests results showed that ternary blends produced 2-day strengths higher than that specified by EN 197-1 and that blends containing up to 20% admixtures can be used to produce both Class 32.5N and 42.5N cements.展开更多
There are potentially huge amounts of water stored in Earth's mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion(ppm, part per million). Exploring water in ...There are potentially huge amounts of water stored in Earth's mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion(ppm, part per million). Exploring water in the mantle has attracted much attention from the societies of mineralogy and geophysics in recent years. In the subducting slab, serpentine breaks down at high temperature, generating a series of dense hydrous magnesium silicate(DHMS) phases, such as phase A, chondrodite, clinohumite, etc. These phases may serve as carriers of water as hydroxyl into the upper mantle and the mantle transition zone(MTZ). On the other hand, wadsleyite and ringwoodite, polymorphs of olivine, are most the abundant minerals in the MTZ, and able to absorb significant amount of water(up to about 3 wt.% H_2O). Hence, the MTZ becomes a very important layer for water storage in the mantle, and hydration plays important roles in physics and chemistry of the MTZ. In this paper, we will discuss two aspects of hydrous silicate minerals:(1) crystal structures and(2) equations of state(Eo Ss).展开更多
基金NationalNaturalScienceFoundationofChina (No .59772 0 1 9)
文摘Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.
基金Projects 50374037 and 50574038 supported by the National Natural Science Foundation of ChinaB2007-10 by the Provincial Natural Science Foundation of Heilongjiang
文摘Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as accelerants for hydrate formation, on induction time. We experimented with three types of a Tween solution with equal concentrations of 0.001 mol/L (T40, T40/T80 (1:1), T40/T80 (4:1)). By means of visual experimental equipment, developed by us, we measured generalized induction time using a Direct Observation Method. The experimental data were analyzed combined with a mass transfer model and a hydrate crystal nuclei growth model. Our major conclusions are as follows: 1) solubilization of surfactants produces supersaturated gas molecules, which promotes the mass transfer from a bulk phase to hydrates and provides the driving force for the complexation between host molecules (water) and guest molecules in a gas hydrate formation process; 2) when the solution of the surfactant concentration exceeds the critical micelle concentration (CMC), the surfactant in an aqueous solution will transform to micelles. Most of the gas molecules are bound to form clusters with water molecules, which promotes the formation of crystal nuclei of gas hydrates; 3) the surfactant T40 proved to have more notable effects on the promotion of crystal nuclei formation and on shortening the induction time, compared with T40/T80 (1:1) and T40/T80 (4:1).
基金Project(51174231)supported by the National Natural Science Foundation of China
文摘Hydration grossular and hematite monominerals were synthesized. The effects of dissolved organic compounds(including sodium formate, sodium acetate, sodium oxalate, sodium salicylate or disodium phthalate) on the settling performance of hydration grossular or hematite slurries were studied. The settling of the slurries was also investigated with the addition of sodium polyacrylate(PAAS) or hydroxamated polyacrylamide flocculant(HCPAM). The adsorption mechanism of organic compounds on monominerals surfaces was studied by FT-IR and XPS, respectively. A deterioration in settling is observed in order of disodium phthalate>sodium salicylate>sodium oxalate>sodium formate(or sodium acetate). Moreover, PAAS can efficiently eliminate the negative effects of organic compounds on the settling performance of the hydration grossular slurry. HCPAM can efficiently eliminate the negative effects of sodium formate, sodium acetate and sodium oxalate on the settling performance of the hematite slurry, but it only partially improves the settling performance of hematite slurry containing sodium salicylate or disodium phthalate. FT-IR and XPS results show that organic compounds are physically adsorbed on hydration grossular surface, and chemisorptions of organic compounds occur on hematite surface with a bidentate chelating complex.
基金Supported by the National Natural Science Foundation of China (50874040 50904026) the Scientific Research Fund of Heilongjiang Provincial Education Department (11551420)
文摘The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment.
基金Projects(51404102,51334005,51274267)supported by the National Natural Science Foundation of ChinaProject(UNPYSCT-2017140)supported by the Youth Innovation Personnel Training in University and College of Heilongjiang Province,China
文摘Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.
基金NationalNaturalScienceFoundationofChina (No .59772 0 1 9)
文摘Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.
基金Projects(50708046,51178230)supported by the National Natural Science Foundation of ChinaProject(2009CB623203)supported by the National Basic Research Program(973 Program)of ChinaProject(2010CEM006)supported by State Key Lab of High Performance Civil Engineering Materials,China
文摘The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. The experimental results indicate that the water penetration depth, chloride ion transportation depth, and the concentration of chloride ion ingression into concrete increase with raised hydraulic pressure and hold press period. But the chloride ion transportation velocity is only 53% of that of water when concrete specimens are under hydraulic pressure. The chloride transportation coefficient of concrete decreases with hold press period as power function. And that would increase 500% 600% in chloride transportation coefficient when the hydraulic pressure increases from 0 to 1.2 MPa. The hydraulic pressure also decreases the bound chloride ion of concrete to about zero. Besides, the low water-cementitions materials and suitable content of mineral admixture(including fly ash and slag) improve the resistance capacity of chloride penetration, and binding capacity of concrete under hydraulic pressure.
基金Project(2018YFC0705404)supported by the National Key Technology Research and Development of ChinaProjects(51878480,51678442,51878481,51878496)supported by the National Natural Science Foundation of China+1 种基金Project(U1534207)supported by the National High-speed Train Union Fund,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.
文摘Influence of ultrafine active mineral (DK mineral) on mechanical property of fly ash based load bearing aerocrete was analyzed. The result shows that the addition of DK mineral in a suitable amount can enhance obviously the compressive strength of aerocrete. According to the SEM EDS and X ray diffraction analyses, the crystal shapes of hydration products are well developed and interlocked for samples containing DK mineral. Its microstructure is denser than that of the samples without DK mineral. Having a good activation, the DK mineral makes both the type and the quantity of hydrated products be obviously superior to that of the contrast sample.
基金support of the National Natural Science Foundation of China (Grant Nos.51379007,41130742)the support of the Chinese Fundamental Research (973)Program through the Grant No.2013CB036006
文摘This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.
文摘This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive strength of geopolymer concretes were studied. The geopolymer concrete were prepared from Mae Moh fly ash with sodium silicate (Na2SiO3) and sodium hydroxide (Na(OH)) solutions. In the first group, concentration of Na(OH) was varied at 8, 10, 12, and 14 molar and the Si/AI ratio was kept constant at 1.98. In the second group, a concentration of Na(OH) was kept constant at 14 molar and the Si/AI ratio was varied at 2.2, 2.4, 2.6, and 2.8. The hardened concretes were air-cured in laboratory. The compressive strength and water permeability were tested at the age of 28 and 60 days. The results showed that compressive strengths of geopolymer concrete significantly increased with the increase of a concentration of Na(OH) and Si/AI ratio. The water permeability coefficients increase with the decrease of compressive strength. In addition, the high reduction of water permeability coefficients with time was found in geopolymer concrete with lower Na(OH) concentration than that higher Na(OH) concentration.
文摘Two CaCO3-based materials (limestone and clamshells) and steel slag were used as mineral admixtures in cement to produce ternary blends and their influences on hydration and portlandite formation were analyzed. Additionally, mechanical properties were determined. These properties were determined using X-ray diffraction and scanning electron microscopic/energy dispersive X-ray analytical techniques as well as applying methods specified by EN (European Standards) and ASTM (American Standards for Testing and Materials). The portlandite (Ca(OH)E) content was considerably reduced from 36.9% of reference cement to between 13.79% and 15.5%. With the water demand and setting times of the cements containing up to 10%, admixtures did not change significantly. The mechanical tests results showed that ternary blends produced 2-day strengths higher than that specified by EN 197-1 and that blends containing up to 20% admixtures can be used to produce both Class 32.5N and 42.5N cements.
基金supported by the National Natural Science Foundation of China(Grant Nos.41590621&41473058)the Fundamental Research Funds for the Central University(Grant No.G1323531512)MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR07),China University of Geosciences at Wuhan
文摘There are potentially huge amounts of water stored in Earth's mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion(ppm, part per million). Exploring water in the mantle has attracted much attention from the societies of mineralogy and geophysics in recent years. In the subducting slab, serpentine breaks down at high temperature, generating a series of dense hydrous magnesium silicate(DHMS) phases, such as phase A, chondrodite, clinohumite, etc. These phases may serve as carriers of water as hydroxyl into the upper mantle and the mantle transition zone(MTZ). On the other hand, wadsleyite and ringwoodite, polymorphs of olivine, are most the abundant minerals in the MTZ, and able to absorb significant amount of water(up to about 3 wt.% H_2O). Hence, the MTZ becomes a very important layer for water storage in the mantle, and hydration plays important roles in physics and chemistry of the MTZ. In this paper, we will discuss two aspects of hydrous silicate minerals:(1) crystal structures and(2) equations of state(Eo Ss).