Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
A novel method named two-level group contribution (GC-K) method for the estimation of octanol-water partition coefficient (Kow) of chloride hydrocarbon is presented. The equation includes only normal boiling point...A novel method named two-level group contribution (GC-K) method for the estimation of octanol-water partition coefficient (Kow) of chloride hydrocarbon is presented. The equation includes only normal boiling points and molecular weight of compounds. Group contribution parameters of 12 first-level groups and 7 second-level groups for Kow are obtained by correlating experimental data of three types including 57 compounds. By comparing the estimation results of the first-level with that of the two-level groups, it was observed that the latter is better with the addition of the modification of proximity effects. When compared with Marrero's three-level group contribution approach and atom-fragment contribution method (AFC), the accuracy of the average relative error of GC-K by first-level groups is 7.20% and is preferred to other methods.展开更多
Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation ch...Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.展开更多
Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In ...Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In this paper, a fully thermo-hydro-mechanical(THM) coupled model which represents the non-linear responses of gas extraction was implemented to demonstrate the reliability of this model through history data matching. Based on this model, the susceptibilities of gas extraction with single slotted borehole, including the permeability, the gas pressure, the temperature, the coal adsorption characteristics and the radius of slot, were quantified through a series of simulations. The simulation results revealed that increasing the permeability, initial gas pressure and temperature could develop the influence radius of single slotted borehole. This finite element model and its simulation results can improve the understanding of the coal-gas interactions of underground gas drainage and provide a scientific basis for the optimization of drainage systems.展开更多
Based on the analysis of the principles of heat and mass transfer from the liquid bulk to bubble surface during nucleation, a new estimation method to predict the heat transfer of the nucleate pool boiling in binary m...Based on the analysis of the principles of heat and mass transfer from the liquid bulk to bubble surface during nucleation, a new estimation method to predict the heat transfer of the nucleate pool boiling in binary mixtures is proposed in this paper by using the heat and mass transfer analogy (Colburn analogy) at the bubble surface transfer layers. With the use of Thome's concept of boiling range, an approximate method is derived to realize the calculation. The predicted results by this method are in good agreement with the experimental data from different sources.展开更多
In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for ...In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.展开更多
The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coup...The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coupling analytical method. Then calculates the expecting income by dispersing Markov decision and calculates the correlation coefficient and the re-lationship degree. The article obtains the relationship of soil and water conservation investments and all kinds of incomes. Finally, it analyzes the important meaning in socio-economic development of water and soil conservation.展开更多
In this paper, it presented the results of experimental study of utilization of MgO cement as calcium hydrate replacement in lightweight composites based on hemp shives. The results of selected characteristics (compr...In this paper, it presented the results of experimental study of utilization of MgO cement as calcium hydrate replacement in lightweight composites based on hemp shives. The results of selected characteristics (compressive strength and coefficient of thermal conductivity) of hardened composites show that MgO cement based on the milled caustic magnesite is suitable alternative in comparison to conventional binders used in hemp concrete. This material leads to new environmentally products as non-load bearing building materials.展开更多
The northern Batinah occupies approximately 12,150 km2 in the north of Oman Quaternary deposits and Neogene's upper Fats form the aquifer units. MODFLOW compatible MT3D was used for simulation development of the area...The northern Batinah occupies approximately 12,150 km2 in the north of Oman Quaternary deposits and Neogene's upper Fats form the aquifer units. MODFLOW compatible MT3D was used for simulation development of the area. It can be concluded that: (1) The groundwater in the Batinah area generally flows from the south-west to the gulf of Oman in the north-east; (2) Recharge takes place through direct recharge from rainfall and wadi flow by about 902 ×10^3 ma/day; (3) The hydraulic conductivity attains a relatively wide range between 0.02 m/day and 78 m/day and 0.02 m/day and 60 m/day for the Quaternary and Fars respectively; (4) There is probably less potential for groundwater abstraction in the northern part of the area; (5) The water level decreased by about 6 m over 24 years and (6) The increase of salinity most likely due to a contribution of sea water intrusion from the gulf along the coast. It is recommended that: (1) automatic well control system should be installed to accurate measurements of abstraction; (2) further analysis under different future scenarios should be made and (3) formulate an integrated management plan for the basin.展开更多
Drought is one of the extreme events that can be caused by internal climate variability (ICV) and external forcing (EF). Here, the authors investigate the relative contributions of ICY and EF to meteorological dro...Drought is one of the extreme events that can be caused by internal climate variability (ICV) and external forcing (EF). Here, the authors investigate the relative contributions of ICY and EF to meteorological drought changes in China using 40 members from the Community Earth System Model Large Ensemble (CESE_LE) project for historical simulations (in response to greenhouse gases and other EF) and future simulations under the RCP8.5 scenario. The authors use the Standardized Precipitation Index (SPI) to represent meteorological drought, and then define and analyze four drought parameters (frequency, severity, duration, and maximum duration) over eight regions of China. For historical periods, the ICV plays a dominant role in drought variation, while with global warming under the RCP8.5 scenario the EF becomes the prominent factor for drought characteristics. With the global warming signal, the effect of ICV varies with the drought parameters. This study suggests that the ICV should be taken into account when climate model simulations are used to investigate drought--in particular, for historical periods.展开更多
Under barometric pressure, groundwater flow in well-aquifer systems is a kind of hydromechanical coupling problem. Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions insid...Under barometric pressure, groundwater flow in well-aquifer systems is a kind of hydromechanical coupling problem. Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions inside and outside the borehole wall under barometric pressure (BP), an analytic solution to well-water level changes has been proposed in this paper. The formulation shows that the BP coefficients increase with time and tend to BP constant. The Change of BP coefficients over time depends only on the ratio of transmissivity (T) to the well radius squared ( r2, ) , and has nothing to do with the change in BP. The BP constant only relates to aquifer loading efficiency (B), and has nothing to do with the aquifer transmissivity and well radius. The BP coefficients' change over time in the analytic formulation is consistent with the analysis of measured data from the Nanxi wells. Based on the BP coefficient changes over time, a parameter estimation method is suggested and discussed in its application to the estimation of the aquifer BP constant (or B) and transmissivity by using the Nanxi well data.展开更多
The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilib...The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.展开更多
The effective thermal conductivities of gas-saturated porous methane hydrates were measured by a single-sided transient plane source (TPS) technique and simulated by a generalized fractal model of porous media that ba...The effective thermal conductivities of gas-saturated porous methane hydrates were measured by a single-sided transient plane source (TPS) technique and simulated by a generalized fractal model of porous media that based on self-similarity.The density of porous hydrate,measured by the volume of the sample in the experimental system,was used to evaluate the porosity of methane hydrate samples.The fractal model was based on Sierpinski carpet,a thermal-electrical analogy technique and one-dimensional heat flow assumption.Both the experimental and computational results show the effective thermal conductivity of methane hydrate decreases with the porosity increase.The porosity of 0.3 can reduce the thermal conductivity of the methane hydrate by 25%.By analysis of the experimental data and the simulative result,the optimized thermal conductivity of the zero-porosity methane hydrate is about 0.7 W m-1K-1.展开更多
Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UC...Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.展开更多
Influences of crystal-fields (DA and DB ) and interlayer coupling interactions (J3) on dynamic magnetic critical behaviors of a mixed-spin (3//2, 2) bilayer system under an oscillating magnetic field are investi...Influences of crystal-fields (DA and DB ) and interlayer coupling interactions (J3) on dynamic magnetic critical behaviors of a mixed-spin (3//2, 2) bilayer system under an oscillating magnetic field are investigated by the Glauber-type stochastic dynamics based on the mean-field theory. For this purpose, dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and AFM/AFM interactions in detail. We observe that the influences of DA, DB and Ja interactions parameters on the behavior of the dynamic phase diagrams are very much.展开更多
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.
文摘A novel method named two-level group contribution (GC-K) method for the estimation of octanol-water partition coefficient (Kow) of chloride hydrocarbon is presented. The equation includes only normal boiling points and molecular weight of compounds. Group contribution parameters of 12 first-level groups and 7 second-level groups for Kow are obtained by correlating experimental data of three types including 57 compounds. By comparing the estimation results of the first-level with that of the two-level groups, it was observed that the latter is better with the addition of the modification of proximity effects. When compared with Marrero's three-level group contribution approach and atom-fragment contribution method (AFC), the accuracy of the average relative error of GC-K by first-level groups is 7.20% and is preferred to other methods.
基金Projects(51404102,51334005,51274267)supported by the National Natural Science Foundation of ChinaProject(UNPYSCT-2017140)supported by the Youth Innovation Personnel Training in University and College of Heilongjiang Province,China
文摘Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.
基金financial support from the National Natural Science Foundation of China (No.51404250)the Fundamental Research Funds for the Central Universities (No.2013QNB19)+2 种基金the Natural Science Foundation of Jiangsu,China (No.BK20140189)the China Postdoctoral Science Foundation (Nos.2014M550315,2014M550316,2016T90526)the College Graduate Research and Innovation Program of Jiangsu Province (No.KYLX15_1408)
文摘Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In this paper, a fully thermo-hydro-mechanical(THM) coupled model which represents the non-linear responses of gas extraction was implemented to demonstrate the reliability of this model through history data matching. Based on this model, the susceptibilities of gas extraction with single slotted borehole, including the permeability, the gas pressure, the temperature, the coal adsorption characteristics and the radius of slot, were quantified through a series of simulations. The simulation results revealed that increasing the permeability, initial gas pressure and temperature could develop the influence radius of single slotted borehole. This finite element model and its simulation results can improve the understanding of the coal-gas interactions of underground gas drainage and provide a scientific basis for the optimization of drainage systems.
文摘Based on the analysis of the principles of heat and mass transfer from the liquid bulk to bubble surface during nucleation, a new estimation method to predict the heat transfer of the nucleate pool boiling in binary mixtures is proposed in this paper by using the heat and mass transfer analogy (Colburn analogy) at the bubble surface transfer layers. With the use of Thome's concept of boiling range, an approximate method is derived to realize the calculation. The predicted results by this method are in good agreement with the experimental data from different sources.
基金The financial support from the Ministry of Science and Technology under Grant MOST 105-3113-E-033-001
文摘In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.
文摘The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coupling analytical method. Then calculates the expecting income by dispersing Markov decision and calculates the correlation coefficient and the re-lationship degree. The article obtains the relationship of soil and water conservation investments and all kinds of incomes. Finally, it analyzes the important meaning in socio-economic development of water and soil conservation.
文摘In this paper, it presented the results of experimental study of utilization of MgO cement as calcium hydrate replacement in lightweight composites based on hemp shives. The results of selected characteristics (compressive strength and coefficient of thermal conductivity) of hardened composites show that MgO cement based on the milled caustic magnesite is suitable alternative in comparison to conventional binders used in hemp concrete. This material leads to new environmentally products as non-load bearing building materials.
文摘The northern Batinah occupies approximately 12,150 km2 in the north of Oman Quaternary deposits and Neogene's upper Fats form the aquifer units. MODFLOW compatible MT3D was used for simulation development of the area. It can be concluded that: (1) The groundwater in the Batinah area generally flows from the south-west to the gulf of Oman in the north-east; (2) Recharge takes place through direct recharge from rainfall and wadi flow by about 902 ×10^3 ma/day; (3) The hydraulic conductivity attains a relatively wide range between 0.02 m/day and 78 m/day and 0.02 m/day and 60 m/day for the Quaternary and Fars respectively; (4) There is probably less potential for groundwater abstraction in the northern part of the area; (5) The water level decreased by about 6 m over 24 years and (6) The increase of salinity most likely due to a contribution of sea water intrusion from the gulf along the coast. It is recommended that: (1) automatic well control system should be installed to accurate measurements of abstraction; (2) further analysis under different future scenarios should be made and (3) formulate an integrated management plan for the basin.
基金supported by the Key Project of the Ministry of Science and Technology of China[grant number2016YFA0602401]the National Natural Science Foundation of China[grant number 41275110]supported by the National Science Foundation[grant number AGS-0944101]
文摘Drought is one of the extreme events that can be caused by internal climate variability (ICV) and external forcing (EF). Here, the authors investigate the relative contributions of ICY and EF to meteorological drought changes in China using 40 members from the Community Earth System Model Large Ensemble (CESE_LE) project for historical simulations (in response to greenhouse gases and other EF) and future simulations under the RCP8.5 scenario. The authors use the Standardized Precipitation Index (SPI) to represent meteorological drought, and then define and analyze four drought parameters (frequency, severity, duration, and maximum duration) over eight regions of China. For historical periods, the ICV plays a dominant role in drought variation, while with global warming under the RCP8.5 scenario the EF becomes the prominent factor for drought characteristics. With the global warming signal, the effect of ICV varies with the drought parameters. This study suggests that the ICV should be taken into account when climate model simulations are used to investigate drought--in particular, for historical periods.
基金supported by special funds for Public Welfare Scientific Research of Ministry of Science and Technology,PRC(200808055)Scientific Research Project of Education Department,Hebei Province(Z2009104),China
文摘Under barometric pressure, groundwater flow in well-aquifer systems is a kind of hydromechanical coupling problem. Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions inside and outside the borehole wall under barometric pressure (BP), an analytic solution to well-water level changes has been proposed in this paper. The formulation shows that the BP coefficients increase with time and tend to BP constant. The Change of BP coefficients over time depends only on the ratio of transmissivity (T) to the well radius squared ( r2, ) , and has nothing to do with the change in BP. The BP constant only relates to aquifer loading efficiency (B), and has nothing to do with the aquifer transmissivity and well radius. The BP coefficients' change over time in the analytic formulation is consistent with the analysis of measured data from the Nanxi wells. Based on the BP coefficient changes over time, a parameter estimation method is suggested and discussed in its application to the estimation of the aquifer BP constant (or B) and transmissivity by using the Nanxi well data.
基金supported by the National Natural Science Foundation of China(51106163)the National Basic Research Program of China (2009CB219504)the Joint Funds of NSFC with the Government of Guangdong Province(U0933004)
文摘The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.
基金supported by the National Basic Research Program of China (2009CB219504)the National Natural Science Foundation of China (50706056,U0933004)Guangdong Province Science and Technology Program (2009B030600005)
文摘The effective thermal conductivities of gas-saturated porous methane hydrates were measured by a single-sided transient plane source (TPS) technique and simulated by a generalized fractal model of porous media that based on self-similarity.The density of porous hydrate,measured by the volume of the sample in the experimental system,was used to evaluate the porosity of methane hydrate samples.The fractal model was based on Sierpinski carpet,a thermal-electrical analogy technique and one-dimensional heat flow assumption.Both the experimental and computational results show the effective thermal conductivity of methane hydrate decreases with the porosity increase.The porosity of 0.3 can reduce the thermal conductivity of the methane hydrate by 25%.By analysis of the experimental data and the simulative result,the optimized thermal conductivity of the zero-porosity methane hydrate is about 0.7 W m-1K-1.
基金supported by the Basic Research Funds for the Central Universities (Grant No. 2652015116)the National Natural Science Foundation of China (Grant Nos. 51209187, 41530316 & 91125024)+1 种基金the National Key Research and Development Program of China (Grant No. 2016YFC0402805)the Beijing Higher Education Young Elite Teacher Project (Grant No. YETP0653)
文摘Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.
基金Supported by Erciyes University Research Fund under Grant No.FBA-2016-6324
文摘Influences of crystal-fields (DA and DB ) and interlayer coupling interactions (J3) on dynamic magnetic critical behaviors of a mixed-spin (3//2, 2) bilayer system under an oscillating magnetic field are investigated by the Glauber-type stochastic dynamics based on the mean-field theory. For this purpose, dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and AFM/AFM interactions in detail. We observe that the influences of DA, DB and Ja interactions parameters on the behavior of the dynamic phase diagrams are very much.