The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate ph...The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate phosphogypsum(HPG). Results showed that water channels were mainly distributed in the cylinders of α-HH crystal,whereas no water channel existed in the conical surfaces parallel to the z-axis. Increasing the number of water channels was critical to enhance the hydration activity of HPG compared with the hydration reactivity of industrial HPG and type-α high-strength gypsum. Controlling the technological parameters of crystallization by concentration of liquid-phase SO_4^(2-) made it possible to obtain HPG which had the stumpy crystals of α-HH and high hydration reactivity.展开更多
基金Supported by the Guizhou Province Fund Project(2014)7618
文摘The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate phosphogypsum(HPG). Results showed that water channels were mainly distributed in the cylinders of α-HH crystal,whereas no water channel existed in the conical surfaces parallel to the z-axis. Increasing the number of water channels was critical to enhance the hydration activity of HPG compared with the hydration reactivity of industrial HPG and type-α high-strength gypsum. Controlling the technological parameters of crystallization by concentration of liquid-phase SO_4^(2-) made it possible to obtain HPG which had the stumpy crystals of α-HH and high hydration reactivity.