The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a g...The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 nmol/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split_root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole_root_drying treatment than those in the semi_root_drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic.展开更多
In this paper, the hydraulic resistances and capacitances were evaluated. based on the development of non-(?) model of water flow in the soil-plant system and the simulating experiment work.The results show that the m...In this paper, the hydraulic resistances and capacitances were evaluated. based on the development of non-(?) model of water flow in the soil-plant system and the simulating experiment work.The results show that the mean hydraulic resistance in the soil-plant system is 6.79×109 MPa·S·m-3; the mean hydraulic capacitance in the system is 5.2×107m3·MPa-1. In the components of hydraulic capacitance in the system, the capacitance in soil (81.8×10-6m3·MPa ) is the biggest and its variability with suii water potential is extremely strong, the capacitance in plant (5.3×10-7m3·MPa-1) is much smaller than that in soil, and the capacitance in shoots (15.5×10-7m3·2MPa-1) is bigger than that in roots (8.4×10-7m3·2MPa-1). An interesting result is that the capacitance in plant is almost equivalent to that in the soil-plant system.展开更多
The soil drought stress experiment in different durations (no watering within 3d, 6d, 9d, 11d individually) was conducted to study the drought-resistant capacity of one-year-old seedlings for the native tree species (...The soil drought stress experiment in different durations (no watering within 3d, 6d, 9d, 11d individually) was conducted to study the drought-resistant capacity of one-year-old seedlings for the native tree species (Machilus yunnanensis) in Yunnan Province and the introduced tree species (Cinnamomum camphora). The leaf water potential, chlorophyll content, proline content and plasma membrane permeability for two species seedlings were measured in different soil drought conditions. The results showed that, on the 9th day of drought stress, the leaf water potential of two species decreased obviously, whereas the free proline content and plasma membrane permeability increased sharply. On the 11th day, the leaf water potential of C. camphora seedlings was lower than that of M. yunnanensis seedlings; the plasma membrane permeability in C. camphora seedling leaves increased much more than that in M. yunnanensis seedling leaves, which showed that the injury to the former by soil drought stress was more severe than that to the latter. The free proline content in M. yunnanensis seedling leaves continued to increase on the 11th day, but that in the C. camphora seedling leaves started to drop obviously, indicating that the reduction of osmotic regulation substance in C. camphora seedling leaves after the 11th day was unable to maintain the osmotic balance between the plasma system and its surroundings and the water loss occurred inevitably. Comprehensively, M. yunnanensis seedlings enhanced the drought-resistance in the course of soil drought stress by maintaining higher leaf water potential and by increasing osmotic regulation substance to promote cell plasma concentration and maintain membrane structure integrity so as to reduce water loss. The subordination function index evaluated with fuzzy mathematic theory also showed that the drought-resistant capacity of M. yunnanensis seedlings was stronger than that of C. camphora seedlings.展开更多
Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,includ...Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.展开更多
Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-t...Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-thawing condition. Based on the latest research at home and abroad,through the investigation of soil moisture-salt change in the freeze-thawing process,the conclusion is made that the soil water potential gradient is the main driving force of soil salt movement and the factors are of quantities. The research shows that,when freezing,temperature drops,salt and moisture move towards frozen layer. All make the salinity content of the frozen layer increase significantly. In the thawing process,salinity and moisture in the soil move up again with evaporation and makes the salt second migration.展开更多
文摘The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 nmol/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split_root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole_root_drying treatment than those in the semi_root_drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic.
文摘In this paper, the hydraulic resistances and capacitances were evaluated. based on the development of non-(?) model of water flow in the soil-plant system and the simulating experiment work.The results show that the mean hydraulic resistance in the soil-plant system is 6.79×109 MPa·S·m-3; the mean hydraulic capacitance in the system is 5.2×107m3·MPa-1. In the components of hydraulic capacitance in the system, the capacitance in soil (81.8×10-6m3·MPa ) is the biggest and its variability with suii water potential is extremely strong, the capacitance in plant (5.3×10-7m3·MPa-1) is much smaller than that in soil, and the capacitance in shoots (15.5×10-7m3·2MPa-1) is bigger than that in roots (8.4×10-7m3·2MPa-1). An interesting result is that the capacitance in plant is almost equivalent to that in the soil-plant system.
基金This research was supported by Research Fund of Southwest Forestry College (200510)
文摘The soil drought stress experiment in different durations (no watering within 3d, 6d, 9d, 11d individually) was conducted to study the drought-resistant capacity of one-year-old seedlings for the native tree species (Machilus yunnanensis) in Yunnan Province and the introduced tree species (Cinnamomum camphora). The leaf water potential, chlorophyll content, proline content and plasma membrane permeability for two species seedlings were measured in different soil drought conditions. The results showed that, on the 9th day of drought stress, the leaf water potential of two species decreased obviously, whereas the free proline content and plasma membrane permeability increased sharply. On the 11th day, the leaf water potential of C. camphora seedlings was lower than that of M. yunnanensis seedlings; the plasma membrane permeability in C. camphora seedling leaves increased much more than that in M. yunnanensis seedling leaves, which showed that the injury to the former by soil drought stress was more severe than that to the latter. The free proline content in M. yunnanensis seedling leaves continued to increase on the 11th day, but that in the C. camphora seedling leaves started to drop obviously, indicating that the reduction of osmotic regulation substance in C. camphora seedling leaves after the 11th day was unable to maintain the osmotic balance between the plasma system and its surroundings and the water loss occurred inevitably. Comprehensively, M. yunnanensis seedlings enhanced the drought-resistance in the course of soil drought stress by maintaining higher leaf water potential and by increasing osmotic regulation substance to promote cell plasma concentration and maintain membrane structure integrity so as to reduce water loss. The subordination function index evaluated with fuzzy mathematic theory also showed that the drought-resistant capacity of M. yunnanensis seedlings was stronger than that of C. camphora seedlings.
基金supported by the National Basic Research Program of China under Grants 2010CB950304 and 2009CB421406the Special Fund for the public welfare indus-try (Meteorology) under Grant GYHY200906018+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant KZCX2-YW-QN202the Chinese Academy of Sciences under Grants KZCX2-YW-Q1-02 and KZCX2-YW-Q11-00
文摘Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.
文摘Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-thawing condition. Based on the latest research at home and abroad,through the investigation of soil moisture-salt change in the freeze-thawing process,the conclusion is made that the soil water potential gradient is the main driving force of soil salt movement and the factors are of quantities. The research shows that,when freezing,temperature drops,salt and moisture move towards frozen layer. All make the salinity content of the frozen layer increase significantly. In the thawing process,salinity and moisture in the soil move up again with evaporation and makes the salt second migration.