It is important to evaluate and monitor the environmental impacts by the activity in our hand with appropriate methods, and the geophysical techniques have often been used in the subsurface environmental monitoring an...It is important to evaluate and monitor the environmental impacts by the activity in our hand with appropriate methods, and the geophysical techniques have often been used in the subsurface environmental monitoring and remediation processes. In the study an electromagnetic survey (EM) is performed to delineate deeply the extent of contamination at an industrial abandoned site, to detect the spread of groundwater and soil contamination, to locate possible pathways of leachate plumes. Based on the analysis of the geophysical anomaly of electrical conductivity, the survey area is delineated into three zones: original zone, transitional zone and contaminated zone. It was inferred that the high conductivity zones correspond to the contaminated zones of groundwater and soil. The survey demonstrates that EM method has the ability to measure small changes in subsurface properties involving ground water and is sensitive to the conductive layers. The measurement shows the behavior of groundwater and soil contamination and the position of groundwater pipelines, and it is beneficial to help waste management processes and to determine possible locations of monitoring wells so as to monitor the environment in the survey area in the future.展开更多
The present study is conducted in the scenario of the tannery waste hazards in Kasur district of Pakistan where the tannery industry is considered as major cause of groundwater quality deterioration, Area focused in t...The present study is conducted in the scenario of the tannery waste hazards in Kasur district of Pakistan where the tannery industry is considered as major cause of groundwater quality deterioration, Area focused in this research constitutes the surroundings of the effluent carrying drains near tannery units. This study includes soil explorations, groundwater monitoring and wastewater analysis in the research area so as to find out the contamination extent of chromium in subsurface. Initial groundwater monitoring exhibited chromium concentrations as high as 90 mg/L in the tannery area. Even groundwater sampling from monitoring wells installed in the adjacent areas of effluent carrying drains, showed concentrations up to 10.4 mg/L. Wastewater analysis of all the drains in the research area has evidenced potential risk of contaminant seepage into soil and groundwater as level of chromium in wastewater samples has reported to be immensely high and varies from 68 mg/L to 2,152 mg/L. However the 30 soil samples collected from two soil bores did not show any significant results as the maximum values obtained for hexavalent chromium for leaching and retained in soil are 0.02 mg/L and 8.1 mg/kg, respectively. These low concentrations of soil samples suggest that the soil contamination may not be a main environmental issue in the areas adjacent to the effluent carrying drains, The research concludes as possibility of direct interference of the tannery wastewater with groundwater through damaged structures and sewers.展开更多
文摘It is important to evaluate and monitor the environmental impacts by the activity in our hand with appropriate methods, and the geophysical techniques have often been used in the subsurface environmental monitoring and remediation processes. In the study an electromagnetic survey (EM) is performed to delineate deeply the extent of contamination at an industrial abandoned site, to detect the spread of groundwater and soil contamination, to locate possible pathways of leachate plumes. Based on the analysis of the geophysical anomaly of electrical conductivity, the survey area is delineated into three zones: original zone, transitional zone and contaminated zone. It was inferred that the high conductivity zones correspond to the contaminated zones of groundwater and soil. The survey demonstrates that EM method has the ability to measure small changes in subsurface properties involving ground water and is sensitive to the conductive layers. The measurement shows the behavior of groundwater and soil contamination and the position of groundwater pipelines, and it is beneficial to help waste management processes and to determine possible locations of monitoring wells so as to monitor the environment in the survey area in the future.
文摘The present study is conducted in the scenario of the tannery waste hazards in Kasur district of Pakistan where the tannery industry is considered as major cause of groundwater quality deterioration, Area focused in this research constitutes the surroundings of the effluent carrying drains near tannery units. This study includes soil explorations, groundwater monitoring and wastewater analysis in the research area so as to find out the contamination extent of chromium in subsurface. Initial groundwater monitoring exhibited chromium concentrations as high as 90 mg/L in the tannery area. Even groundwater sampling from monitoring wells installed in the adjacent areas of effluent carrying drains, showed concentrations up to 10.4 mg/L. Wastewater analysis of all the drains in the research area has evidenced potential risk of contaminant seepage into soil and groundwater as level of chromium in wastewater samples has reported to be immensely high and varies from 68 mg/L to 2,152 mg/L. However the 30 soil samples collected from two soil bores did not show any significant results as the maximum values obtained for hexavalent chromium for leaching and retained in soil are 0.02 mg/L and 8.1 mg/kg, respectively. These low concentrations of soil samples suggest that the soil contamination may not be a main environmental issue in the areas adjacent to the effluent carrying drains, The research concludes as possibility of direct interference of the tannery wastewater with groundwater through damaged structures and sewers.