The Three Gorges Reservoir, the world’s largest hydropower reservoir, receives a significant sediment yield from soil erosion. Sloping farmland is the main source, exacerbated by changes in land use from relocating t...The Three Gorges Reservoir, the world’s largest hydropower reservoir, receives a significant sediment yield from soil erosion. Sloping farmland is the main source, exacerbated by changes in land use from relocating the inhabitants, and from engineering projects related to dam construction. Related geo-hazards, including landsliding of valley-side slopes, will further increase the sediment yield to the completed reservoir. Integrated watershed management, begun extensively in 1989, has effectively controlled soil erosion and sediment delivery to date. What is described here as the Taipinxi Mode of integrated watershed management, based on its application in the 26.14 km2 watershed of that name in Yiling District, has been successful and is recommended for the entire region. The effects of this set of erosion-mitigation measures are assessed, using experienced formulas for soil and water conservation and information from remote sensing. The amount of soil erosion, and of sediment delivery to the reservoir were reduced by 43.75–45.94 × 106 t y-1, and by 12.25–12.86 × 106 t y-1, respectively, by 2005, by which time the project had been operative for 16 years.展开更多
To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyan...To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyang,Northeast China,where the irrigation with petroleum wastewater had lasted for more than fifty years,and then groundwater irrigation instead of wastewater irrigation was applied due to the gradually serious PAHs pollution in soil.Soil chemical properties,including PAHs and nutrients contents,and soil microbial characteristics,including microbial biomass carbon,substrateinduced respiration,microbial quotient(qM),metabolic quotient(qCO2),dehydrogenase(DH),polyphenol oxidase(PO),urease(UR) and cellulase(CE) in surface and subsurface were determined.Total organic C,total N,total P,and available K were significantly different between the sites studied.The PAHs concentrations ranged from 610.9 to 6362.8 μg kg-1 in the surface layers(0-20 cm) and from 404.6 to 4318.5 μg kg-1 in the subsurface layers(20-40 cm).From the principal component analysis,the first principal component was primarily weighed by total PAHs,total organic C,total N,total P and available K,and it was the main factor that influencing the soil microbial characteristics.Among the tested microbial characteristics,DH,PO,UR,CE,qM and qCO2 were more sensitive to the PAHs stress than the others,thus they could serve as useful ecological assessment indicators for soil PAHs pollution.展开更多
基金State Key Project of 2006BAC10B04, ChinaCAS Knowledge Innovation Project of KZCX2-YW-302
文摘The Three Gorges Reservoir, the world’s largest hydropower reservoir, receives a significant sediment yield from soil erosion. Sloping farmland is the main source, exacerbated by changes in land use from relocating the inhabitants, and from engineering projects related to dam construction. Related geo-hazards, including landsliding of valley-side slopes, will further increase the sediment yield to the completed reservoir. Integrated watershed management, begun extensively in 1989, has effectively controlled soil erosion and sediment delivery to date. What is described here as the Taipinxi Mode of integrated watershed management, based on its application in the 26.14 km2 watershed of that name in Yiling District, has been successful and is recommended for the entire region. The effects of this set of erosion-mitigation measures are assessed, using experienced formulas for soil and water conservation and information from remote sensing. The amount of soil erosion, and of sediment delivery to the reservoir were reduced by 43.75–45.94 × 106 t y-1, and by 12.25–12.86 × 106 t y-1, respectively, by 2005, by which time the project had been operative for 16 years.
基金Supported by the National Natural Science Foundation of China(No.40801091)the National Basic Research Program(973 Program)of China(No.2004CB418503)
文摘To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyang,Northeast China,where the irrigation with petroleum wastewater had lasted for more than fifty years,and then groundwater irrigation instead of wastewater irrigation was applied due to the gradually serious PAHs pollution in soil.Soil chemical properties,including PAHs and nutrients contents,and soil microbial characteristics,including microbial biomass carbon,substrateinduced respiration,microbial quotient(qM),metabolic quotient(qCO2),dehydrogenase(DH),polyphenol oxidase(PO),urease(UR) and cellulase(CE) in surface and subsurface were determined.Total organic C,total N,total P,and available K were significantly different between the sites studied.The PAHs concentrations ranged from 610.9 to 6362.8 μg kg-1 in the surface layers(0-20 cm) and from 404.6 to 4318.5 μg kg-1 in the subsurface layers(20-40 cm).From the principal component analysis,the first principal component was primarily weighed by total PAHs,total organic C,total N,total P and available K,and it was the main factor that influencing the soil microbial characteristics.Among the tested microbial characteristics,DH,PO,UR,CE,qM and qCO2 were more sensitive to the PAHs stress than the others,thus they could serve as useful ecological assessment indicators for soil PAHs pollution.