[Objective] This comparative experiment was to explore the soil loss con- trol effects under cultivation combination of different soil and vegetation types, and to provide scientific basis for the upcoming pilot proje...[Objective] This comparative experiment was to explore the soil loss con- trol effects under cultivation combination of different soil and vegetation types, and to provide scientific basis for the upcoming pilot project of ecological recovery. [Method] Both the rudiment of water locomotion functioned by micro-landscape structures and different spatial combinations of various landscape constituents are considered, thus, the combination of multi-soil type, crop species and site conditions is designed in three different experimental sites. [Result] Soil loss estimates in experiments in South Wello significantly depended on various soil type, slope, vegetation and type of con- servation structure; grass cover tremendously reduces soil loss; legume cultivation performed better than cereal cultivation in soil loss control. [Conclusion] By conduct- ing the data analysis of the experiment, a scientific reference is proposed to the agri- culture planting and protective mode for the alleviation of water and soil loss in Amhara Region, Ethiopia.展开更多
The influence of pre-quaternary underlying terrain on the formation of loess landforms, i.e., the geomorphological inheritance issue, is a focus in studies of loess landforms. On the basis of multi-source information,...The influence of pre-quaternary underlying terrain on the formation of loess landforms, i.e., the geomorphological inheritance issue, is a focus in studies of loess landforms. On the basis of multi-source information, we used GIS spatial analysis methods to construct a simulated digital elevation model of a pre-quaternary paleotopographic surface in a severe soil erosion area of the Loess Plateau. To reveal the spatial relationship between underlying paleotopography and modern terrain, an XY scatter diagram, hypsometric curve, gradient and concavity of terrain profiles are used in the experiments. The experiments show that the altitude, gradient and concavity results have significant linear positive correlation between both terrains, which shows a relatively strong landform inheritance relationship, particularly in the intact and complete loess deposit areas. Despite the current surface appearing somewhat changed from the original shape of the underlying terrain under different erosion forces, we reveal that the modern terrain generally smoothes the topographic relief of underlying terrain in the loess deposition process. Our results deepen understanding of the characteristics of geomorphological inheritance in the formation and evolution of loess landforms.展开更多
基金Supported by FAO of the United Nations under South-South Cooperation Program in Ethiopia(SSC/SPFS-FAO-ETHIOPIA-CHINA)~~
文摘[Objective] This comparative experiment was to explore the soil loss con- trol effects under cultivation combination of different soil and vegetation types, and to provide scientific basis for the upcoming pilot project of ecological recovery. [Method] Both the rudiment of water locomotion functioned by micro-landscape structures and different spatial combinations of various landscape constituents are considered, thus, the combination of multi-soil type, crop species and site conditions is designed in three different experimental sites. [Result] Soil loss estimates in experiments in South Wello significantly depended on various soil type, slope, vegetation and type of con- servation structure; grass cover tremendously reduces soil loss; legume cultivation performed better than cereal cultivation in soil loss control. [Conclusion] By conduct- ing the data analysis of the experiment, a scientific reference is proposed to the agri- culture planting and protective mode for the alleviation of water and soil loss in Amhara Region, Ethiopia.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40930531, 41171320)the National High Technology Research and Development Program of China (Grant No. 2011AA120303)Open Foundation of State Key Laboratory of Resources and Environmental Information System (Grant No. 2010KF0002SA)
文摘The influence of pre-quaternary underlying terrain on the formation of loess landforms, i.e., the geomorphological inheritance issue, is a focus in studies of loess landforms. On the basis of multi-source information, we used GIS spatial analysis methods to construct a simulated digital elevation model of a pre-quaternary paleotopographic surface in a severe soil erosion area of the Loess Plateau. To reveal the spatial relationship between underlying paleotopography and modern terrain, an XY scatter diagram, hypsometric curve, gradient and concavity of terrain profiles are used in the experiments. The experiments show that the altitude, gradient and concavity results have significant linear positive correlation between both terrains, which shows a relatively strong landform inheritance relationship, particularly in the intact and complete loess deposit areas. Despite the current surface appearing somewhat changed from the original shape of the underlying terrain under different erosion forces, we reveal that the modern terrain generally smoothes the topographic relief of underlying terrain in the loess deposition process. Our results deepen understanding of the characteristics of geomorphological inheritance in the formation and evolution of loess landforms.