期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
城市水土环境变化的地质指标体系
1
作者 姚治华 王红旗 《地质通报》 CAS CSCD 北大核心 2011年第11期1774-1778,共5页
随着全球城市化进程的不断加快,城市水土环境变化日益引起人们的关注。借鉴国际地质指标研究的思路,有针对性地构建了城市水土环境变化的地质指标体系。首先明确了城市水土环境的概念内涵,确定了指标体系构建的原则,在此基础上提出了融... 随着全球城市化进程的不断加快,城市水土环境变化日益引起人们的关注。借鉴国际地质指标研究的思路,有针对性地构建了城市水土环境变化的地质指标体系。首先明确了城市水土环境的概念内涵,确定了指标体系构建的原则,在此基础上提出了融合"CSR模型"和"PSR模型"的指标体系框架,在此框架指导下构建了城市水土环境变化调查指标体系和监测指标体系,二者共同构成了城市水土环境变化地质指标体系,为城市水土环境调查、监测与管理提供了前期的技术支撑。 展开更多
关键词 城市水土环境变化 地质指标体系 CSR模型 PSR模型 调查指标体系 监测指标体系
下载PDF
塔里木河流域水资源开发利用及其环境效应 被引量:19
2
作者 冯起 刘蔚 +1 位作者 司建华 苏永红 《冰川冻土》 CSCD 北大核心 2004年第6期682-690,共9页
近30a来,由于塔里木河流域水资源无序的开发利用,导致了严重水土环境退化.从20世纪50—70年代,下游300km河道逐渐干涸,致使下游水文过程和生态环境严重破坏.1960—1980年下游水位由2~4m下降到4~10m;1980年后,水位年降速率是20cm.1958... 近30a来,由于塔里木河流域水资源无序的开发利用,导致了严重水土环境退化.从20世纪50—70年代,下游300km河道逐渐干涸,致使下游水文过程和生态环境严重破坏.1960—1980年下游水位由2~4m下降到4~10m;1980年后,水位年降速率是20cm.1958—1978年,塔里木河流域胡杨减少了2/3,生物量下降了1/2;1950—1990年代,塔里木河下游主要树种胡杨林减少了3820km2,而灌木和草地面积减少了200km2.这种水文变化已导致水环境的明显恶化,并引起了土地沙漠化,1960—1990年代形成沙漠化土地12300km2.塔里木河的盐分含量逐渐升高,1960年的最大含盐量是1.28g·L-1,但1981—1984年达到4g·L-1,到1998年达7.8g·L-1.根据对沙漠化土地有机碳含量推算,近30a塔里木河流域土壤由于退化向大气中释放的有机碳多达112Tg,且28.3%来自表层0~1.0m土壤.人类活动的强度干扰是导致以上水环境变化的重要原因,解决问题的关键是提高对水资源与水土环境监测、观测、管理和恢复的科学与技术水平. 展开更多
关键词 水资源 水土环境变化 生态系统退化 塔里木河流域
下载PDF
Influences of environmental changes on water storage variations in Central Asia 被引量:7
3
作者 胡伟杰 刘海隆 +1 位作者 包安明 Attia M.EL-TANTAWI 《Journal of Geographical Sciences》 SCIE CSCD 2018年第7期985-1000,共16页
The spatio-temporal pattern of the global water resource has significantly changed with climate change and intensified human activities. The regional economy and ecological environment are highly affected by terrestri... The spatio-temporal pattern of the global water resource has significantly changed with climate change and intensified human activities. The regional economy and ecological environment are highly affected by terrestrial water storage(TWS), especially in arid areas. To investigate the response relationships between TWS and changing environments(climate change and human activities) in Central Asia, we used the Gravity Recovery and Climate Experiment(GRACE) data, Climatic Research Unit(CRU) climate data and Moderate Resolution Imaging Spectroradiometer(MODIS) remote sensing data products(MOD16A2, MOD13A3 and MCD12Q1) from 2003 to 2013, as well as the slope and Pearson correlation analysis methods. Results indicate that:(1) TWS in about 77% of the study area decreased from 2003 to 2013. The total change volume of TWS is about 2915.6 × 108 m^3. The areas of decreased TWS are mainly distributed in the middle of Central Asia, while the areas of increased TWS are concentrated in the middle-altitude regions of the Kazakhstan hills and Tarim Basin.(2) TWS in about 5.91% of areas, mainly distributed in the mountain and piedmont zones, is significantly positively correlated with precipitation, while only 3.78% of areas show significant correlation between TWS and temperature. If the response time was delayed by three months, there would be a very good correlation between temperature and TWS.(3) There is a significantly positive relationship between TWS and Normalized Difference Vegetation Index(NDVI) in 13.35% of the study area.(4) The area of significantly positive correlation between TWS and evapotranspiration is about 31.87%, mainly situated in mountainous areas and northwestern Kazakhstan. The reduction of regional TWS is related to precipitation more than evaporation. Increasing farmland area may explain why some areas show increasing precipitation and decreasing evapotranspiration.(5) The influences of land use on TWS are still not very clear. This study could provide scientific data useful for the estimation of changes in TWS with climate change and human activities. 展开更多
关键词 terrestrial water storage Central Asia climate change land use
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部