The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition f...The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.展开更多
In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic ...In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic mechanics in this paper.By solving this model the deformation of water-resistant rock strata under the action of water pressure and the expression of critical water pressure for collapse pillar waterinrush have been obtained The research results indicate that:the boundary conditions and strength of water-resistant strata play important roles in influencing water-inrush of collapse pillars.The critical water-inrush pressure is determined by both relative thickness and absolute thickness of water-resistant strata.展开更多
In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further- more, ...In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further- more, the influence of some parameters (e.g., advancing distance of working face, water pressure, initial fracture length and its angle) on confined water progressive intrusion height were analyzed. The results indicate that tension-shearing fracture of floor is extended more easily than compression-shearing frac- ture under the same conditions. When floor fracture dip angle is less than 90% tension-shearing extension occurs more easily on the left edge of the goaf. If fracture dip angle is larger than 90% it occurs more easily on the right edge of the goal. The longer the advancing distance of working face is, the greater initial frac- ture length goes; or the larger water pressure is, the greater possibility of tension-shearing extension occurs. The confined water progressive intrusion height reaches the maximum on the edge of the goaf. Field in situ test is consistent with the theoretical analysis result.展开更多
As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly i...As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.展开更多
Based on the tunnel shape, span and depth, the previous elliptical plate model and clamped beam model were modified.The modified model was applied to different situations. For the elliptical plate model, the water eff...Based on the tunnel shape, span and depth, the previous elliptical plate model and clamped beam model were modified.The modified model was applied to different situations. For the elliptical plate model, the water effects were considered. For the clamped beam model, water and horizontal stress were considered. Corresponding potential functions and cusp catastrophe models of rock system were established based on the catastrophe theory. The expressions of critical safety thickness were derived with necessary and sufficient conditions. The method was applied to the practical engineering. Some parameters related to the stability were discussed. The results show that elastic modulus and thickness are advantageous to the floor stability, and that the load, span,horizontal stress and water are disadvantageous to the floor stability.展开更多
The hygienic threshold limit values for ammonia (25 ppm) for animal welfare but also for occupational safety and health is often exceeded in floor housing systems for laying hens with long time storage of manure in ...The hygienic threshold limit values for ammonia (25 ppm) for animal welfare but also for occupational safety and health is often exceeded in floor housing systems for laying hens with long time storage of manure in bins below draining floors. The major reason for high ammonia concentrations is the large amounts of stored and exposed manure. The possibility to reduce ammonia release by reducing the amount of stored manure in bins in floor housing systems for laying hens has therefore been investigated. Investigations were carried out in a climate chamber equipped with a floor housing system with a manure removal system with two parallel motor driven conveyors placed below an elevated draining floor. The conditions when manure is stored in bins below draining floors were simulated by storing manure on the conveyors for several days at constant ventilation rates and temperatures. The investigations clearly showed that storage of manure in the bin caused a rapid increase in ammonia concentrations. After about 7 days storage of manure in the bin the ammonia concentration exceeded the hygienic threshold limit values. It can be concluded that long time storage of manure in storage bins below draining floors should not be recommended. It was possible to maintain the ammonia concentration below the hygienic threshold limit values when manure was removed frequently with conveyors. Floor housing systems for laying hens with elevated draining floors should therefore be equipped with manure removal systems that enable frequent removal of manure in the bins.展开更多
In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stres...In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stress on the stability of soft rock roadway was analyzed. The results show that the maximum principal stress is in the horizontal direction with a northeast orientation and has a value of about 1.2–1.9 times larger than gravity; the right side of roadway roof and floor is easily subject to serious deformation and failure, and the in situ stress is found to be a major factor. This paper presents important information for developing countermeasures against the large deformation of the soft rock roadway at Qingshui coal mine.展开更多
基金supported by the National Basic Research Program ofChina(No.2010CB202210)the National Natural Science Foundation of China(No.50874103)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)as well as by the Qinglan Project of Jiangsu Province
文摘The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.
基金Projects are supported by the National Basic Research Program of China(No.2007CB209400)the National Natural Science Foundation of China(Nos.50974115,50904065 and 50974107)the 111 Project(No.B07028).
文摘In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic mechanics in this paper.By solving this model the deformation of water-resistant rock strata under the action of water pressure and the expression of critical water pressure for collapse pillar waterinrush have been obtained The research results indicate that:the boundary conditions and strength of water-resistant strata play important roles in influencing water-inrush of collapse pillars.The critical water-inrush pressure is determined by both relative thickness and absolute thickness of water-resistant strata.
基金provided by the National Natural Science Foundation of China (Nos. 51474008 and 41472235)the State Key Laboratory for Coal Resources and Safe Mining, China University of Mining &Technology (No. SKLCRSM13KFB01)+1 种基金the Scientific Research Foundation of Young Teacher of Anhui University of Science and Technology (No. QN201308)the State of College Students’ Innovation Training Project (No. 201210361006)
文摘In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further- more, the influence of some parameters (e.g., advancing distance of working face, water pressure, initial fracture length and its angle) on confined water progressive intrusion height were analyzed. The results indicate that tension-shearing fracture of floor is extended more easily than compression-shearing frac- ture under the same conditions. When floor fracture dip angle is less than 90% tension-shearing extension occurs more easily on the left edge of the goaf. If fracture dip angle is larger than 90% it occurs more easily on the right edge of the goal. The longer the advancing distance of working face is, the greater initial frac- ture length goes; or the larger water pressure is, the greater possibility of tension-shearing extension occurs. The confined water progressive intrusion height reaches the maximum on the edge of the goaf. Field in situ test is consistent with the theoretical analysis result.
基金Project(B15020060)supported by Fundamental Research Funds for the Central Universities,China
文摘As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of China
文摘Based on the tunnel shape, span and depth, the previous elliptical plate model and clamped beam model were modified.The modified model was applied to different situations. For the elliptical plate model, the water effects were considered. For the clamped beam model, water and horizontal stress were considered. Corresponding potential functions and cusp catastrophe models of rock system were established based on the catastrophe theory. The expressions of critical safety thickness were derived with necessary and sufficient conditions. The method was applied to the practical engineering. Some parameters related to the stability were discussed. The results show that elastic modulus and thickness are advantageous to the floor stability, and that the load, span,horizontal stress and water are disadvantageous to the floor stability.
文摘The hygienic threshold limit values for ammonia (25 ppm) for animal welfare but also for occupational safety and health is often exceeded in floor housing systems for laying hens with long time storage of manure in bins below draining floors. The major reason for high ammonia concentrations is the large amounts of stored and exposed manure. The possibility to reduce ammonia release by reducing the amount of stored manure in bins in floor housing systems for laying hens has therefore been investigated. Investigations were carried out in a climate chamber equipped with a floor housing system with a manure removal system with two parallel motor driven conveyors placed below an elevated draining floor. The conditions when manure is stored in bins below draining floors were simulated by storing manure on the conveyors for several days at constant ventilation rates and temperatures. The investigations clearly showed that storage of manure in the bin caused a rapid increase in ammonia concentrations. After about 7 days storage of manure in the bin the ammonia concentration exceeded the hygienic threshold limit values. It can be concluded that long time storage of manure in storage bins below draining floors should not be recommended. It was possible to maintain the ammonia concentration below the hygienic threshold limit values when manure was removed frequently with conveyors. Floor housing systems for laying hens with elevated draining floors should therefore be equipped with manure removal systems that enable frequent removal of manure in the bins.
基金provided by the Beijing Natural Science Foundation(No.8142032)the National Natural Science Foundation of China(No.41040027)+2 种基金the State Key Program of National Natural Science of China(No.5113400)the Research Fund for the Doctoral Program of Higher Education(No.20130023110021)the Special Fund of Basic Research and Operating Expenses of State Key Laboratory of Geomechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing
文摘In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stress on the stability of soft rock roadway was analyzed. The results show that the maximum principal stress is in the horizontal direction with a northeast orientation and has a value of about 1.2–1.9 times larger than gravity; the right side of roadway roof and floor is easily subject to serious deformation and failure, and the in situ stress is found to be a major factor. This paper presents important information for developing countermeasures against the large deformation of the soft rock roadway at Qingshui coal mine.