Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf lu...Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.展开更多
The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides ...The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.展开更多
[Objective] The research aimed to investigate the bioturbation effects of Branchiura sowerbyi (Tubificidae) on the vertical transport of sedimentary particles in paddy field,and explore the bioturbation effects and ...[Objective] The research aimed to investigate the bioturbation effects of Branchiura sowerbyi (Tubificidae) on the vertical transport of sedimentary particles in paddy field,and explore the bioturbation effects and mechanism of benthic Annelida in coupling process of benthic-pelagic interface.[Method]Using chemically stable glass beads as tracers,the vertical transport of sedimentary particles in paddy field was analyzed comparatively with and without B.sowerbyi.[Result]After 10 days' bioturbation of B.sowerbyi,41.3% of the glass beads on the surface of sedimentary particles were transferred downward to the maximum depth of 9.4 cm,and the vertical transportation rate of sedimentary particles was 1.370×10-3/(g·cm2·d). 25.8% and 17.3% of glass beads at a depth of 6 cm were transferred upwards and downwards respectively after bioturbation,to the maximum depth of 5.2 and 2.7 cm respectively,and the vertical transportation rates of sedimentary particles were 8.557×10-4 and 5.738×10-4/(g·cm2·d) respectively.[Conclusion]The sedimentary particles on the surface and deep layer of the paddy field were vertically shifted by the physical activities of B.sowerbyi,thus changed the sedimentary environment.展开更多
The combination method of intermittent influent and vertical flow wetlands (VFW) was used in the test to treat the domestic wastewater. Four artificial wetlands including Typha latifolia wetland,Phragmites australis...The combination method of intermittent influent and vertical flow wetlands (VFW) was used in the test to treat the domestic wastewater. Four artificial wetlands including Typha latifolia wetland,Phragmites australis (P.H.) wetland,polyculture wetlands (Typha latifolia and Phragmites australis) and non-vegetation wetland were established in the test. The effects of hydraulic retention time (HRT) and plant species on pollutants removal efficiencies were studied. The results showed that when HRT=7,the treatment efficiencies of wetlands with plants for the removal of TN and NH+4-N were up to 99.65% and 99.58%,respectively. For the control wetland,TN removal efficiency was up to 87.9% when HRT were 6 days,and NH+4-N removal efficiency was up to 91.8% when HRT were 5 days. TP removal efficiencies of four wetlands were higher than 93% when HRT was 6 days. Through the studies on different plants,it was found that vegetation wetlands had better nitrogen removal efficiency than non-vegetation wetland. The treatment efficacy of Phragmites australis wetland and polyculture wetland was better than Typha latifolia wetland.展开更多
[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulate...[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulated vertical flow arti-ficial wetland, set four hydraulic load level at 50, 100, 150 and 200 cm/d, to identify the impact of hydraulic loading on wetland clogging and to explore the factors run-ning threshold. [Result] The results show that the different levels of hydraulic loading have greater impact; in the constructed wetland clogging process under high hy-draulic loading of 200 cm/d, the effective life was only six months, and the single factor can be speculated that the threshold of the hydraulic load should be at 100-150 cm/d; system can last for six months at low hydraulic loading and last for three months at medium hydraulic load. [Conclusion] The research provides references for wetland clogging experiments in future.展开更多
In order to study the movement characteristics of groundwater in a deep mining area and solve the dispute of the distri- bution rule of hydro-chemical zoning which is contradicted by lixiviation water zoning in a hori...In order to study the movement characteristics of groundwater in a deep mining area and solve the dispute of the distri- bution rule of hydro-chemical zoning which is contradicted by lixiviation water zoning in a horizontal direction, we directed our attention to the source of deep groundwater, its seepage and hydro-chemical characteristics in a typical mining area. We used a neotectonic water-control theory, chemical and isotope methods, as well as a method for analyzing dynamic groundwater conditions. The results indicate that 1) Karst water in the deep and medium parts of this mining area is recharged by vertical leakage through neotectonic fractures rather than seepage along strata from subcrop parts or surrounding flows; 2) from surface to deep leakage paths, the variation in the types of chemical groundwater agrees with the normal lixiviation water distribution rule and the age of mixed groundwater increases; 3) the water-rich zones along neotectonic fractures correspond with water-diluted zones in a hori-zontal direction; 4) the leakage coefficient and water capacity of aquifers increases during the flow process of Karst water along the antidip direction (from west to east) and 5) Karst water in shallow mining areas forms a strong runoff belt along strikes and quickly dilutes the water from deep and medium mining areas. Overall, chemical and dynamic water characteristics actually agree with in terms of the entire consideration for differences in vertical leakage and abnormalities in the zone of water chemical distribution, along a horizontal runoff direction.展开更多
In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process ...In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process of flash flood. However, little attention was paid on bearing body of hazard, the clusters of buildings. Thus the real disaster mechanism of flash flood remains unclear.Accordingly, based on the experiments of artificial flash floods in a conceptual solid model, this paper focuses on the flood-impacted inundation characteristics of the building clusters at different locations of the gully model, in order to obtain a better understanding of the disaster process and the interaction between the flash floods and building clusters. The results showed that, in a typical smallscale flash flood gully with hot and dry climate, 1)clusters of buildings on an alluvial fan could reduce about 35% of the flooding area by blocking the diffusion of the flood to the depression areas, and could also promote the deposition in lower reaches of the river channel by blocking the overbank flow from going back into the channel, making the width-depth ratio of the channel larger. 2) The flash flood rates of disaster and hazard on the alluvial fan are generally higher than that of the inner gully. For the inner gully,buildings located on the beaches along the lower river and the transitional areas of the straight channel and channel bends can easily be affected because of their lower elevations. For the alluvial fan, buildings nearby the meanders suffer the greatest impacts because of bank collapsing and flooding. 3) The safe vertical distance from a building to the river channel is 13 m for the buildings in the inner gully under extreme floods. Below this threshold, the smaller the vertical distance is, the greater the risk exposure is. For the buildings on the alluvial fan, especially for the buildings near the concave bank of the top rush point,the horizontal distance is more important, and the safe value is 80 m under extreme floods.展开更多
To investigate effect of the soluble epidermal growth factor receptor (sEGFR/sErbB1) level in the periph-eral blood in development, invasiveness, apoplexy of each type of pituitary tumor. Methods The sEGFR level was d...To investigate effect of the soluble epidermal growth factor receptor (sEGFR/sErbB1) level in the periph-eral blood in development, invasiveness, apoplexy of each type of pituitary tumor. Methods The sEGFR level was determined in peripheral serum from 190 patients with pituitary diseases by enzyme linked immunosobent assay. The sEGFR levels were measured in 10 pituitary Rathke’s pouch, 18 pituitary hyperplasia, 161 pituitary adenomas including 30 microadenomas, 83 large adenomas, 48 giant adenomas, 1 pituitary carcinoma, and 28 hea-lthy controls. Results In the patients with pituitary hyperplasia, microadenoma, large adenoma, giant adenoma, and pituitary carci-noma, the sEGFR level was 188.92 ± 32.62, 209.83 ± 19.01, 333.20 ± 69.33, 405.85 ± 37.38, and 617.45 fmol/mL indepen-dently. They were all significantly higher than patients with pituitary Rathke’s pouch (156.78 ± 18.24 fmol/mL, P < 0.001) and healthy control group (159.11 ± 40.50 fmol/mL, P < 0.05). The sEGFR level in pituitary carcinoma was higher than pi-tuitary adenoma. In patients with pituitary adenoma, the sEGFR level was positive correlated to the size of pituitary adeno-mas (r = 0.998), the significant difference was observed for the sEGFR level in each group of the patients with pituitary adenomas (P < 0.001). Furthermore, in patients with pituitary ACTH-secreting microadenomas, the serum sEGFR levels in invasiveness (295.00 ± 77.80 fmol/mL) was higher than that in non-invasiveness (210.60 ± 16.4 fmol/mL, P < 0.05). In pati-ents with pituitary ACTH-secreting, PRL-secreting, GH-secreting, and non-functioning large adenomas, the serum sEGFR levels in invasiveness (407.86 ± 28.50, 399.25 ± 30.10, 386.00 ± 13.08, and 369.25 ± 36.70 fmol/mL) was higher than that in non-invasiveness (335.25 ± 63.49, 300.64 ± 47.57, 297.00 ± 61.93, and 269.30 ± 25.68 fmol/mL) respectively (P < 0.05). In patients with invasive pituitary PRL-secreting, GH-secreting, and non-functioning giant adenomas, the serum sEGFR levels not significantly different in between invasiveness (417.50 ± 35.94, 409.50 ± 69.14, and 417.50 ± 44.13 fmol/mL) and non-invasiveness (386.00 ± 49.64, 417.50 ± 44.03, and 409.51 ± 35.17 fmol/mL) (P > 0.05). In patients with pituitary large adeno-mas, the sEGFR levels in pituitary apoplexy (377.48 ± 39.18 fmol/mL) was higher than that in non-pituitary apoplexy (343.18 ± 68.17 fmol/mL, P > 0.05). Conclusions The increased level of peripheral serum sEGFR is concomitant with development, proliferous size of the adenomas in patients with pituitary adenomas. In addition, the elevated levels of serum sEGFR occur in pituitary apoplexy as clinical active tumors, and the non-invasive ACTH secreting adenomas. The sEGFR levels could be differen-tiated helpfully between pituitary adenomas and non-pituitary adenomas. These data suggest that serum sEGFR could be as a referable marker of the size and activation of proliferation in pituitary adenoma.展开更多
We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizont...We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizontal and vertical complexes are introduced with the total differential map and vertical exterior derivative. As the application of the differential calculus, we derive the schemes with the conservation of symplecticity and energy for Hamiltonian system and a two-dimensional integral models with infinite sequence of conserved currents. Then an Euler-Lagrange cohomology with symplectic structure-preserving is given in the discrete classical mechanics.展开更多
The problem of diving control for an underactuated unmanned undersea vehicle(UUV) considering the presence of parameters perturbations and wave disturbances was addressesed.The vertical motion of an UUV was divided in...The problem of diving control for an underactuated unmanned undersea vehicle(UUV) considering the presence of parameters perturbations and wave disturbances was addressesed.The vertical motion of an UUV was divided into two noninteracting subsystems for surge velocity control and diving.To stabilize the vertical motion system,the surge velocity and the depth control controllers were proposed using backstepping technology and an integral-fast terminal sliding mode control(IFTSMC).It is proven that the proposed control scheme can guarantee that all the error signals in the whole closed-loop system globally converge to the sliding surface in finite time and asymptotically converge to the origin along the sliding surface.With a unified control parameters for different motion states,a series of numerical simulation results illustrate the effectiveness of the above designed control scheme,which also shows strong robustness against parameters perturbations and wave disturbances.展开更多
Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts o...Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.展开更多
In this paper, a four-layered road structure containing a top-down crack is investigated by performing finite element analyses in ABAQUS. In this study, in addition to the vertical load of a vehicle wheel, the horizon...In this paper, a four-layered road structure containing a top-down crack is investigated by performing finite element analyses in ABAQUS. In this study, in addition to the vertical load of a vehicle wheel, the horizontal load as well as its position with respect to the crack is also considered in the analyses, and the crack tip parameters including stress intensity factors(SIFs) and T-stress are then calculated. Moreover, influence of elastic modulus and thickness of the pavement layers on the crack tip parameters is studied. Results show that the horizontal and vertical loads along with their position with respect to the crack, elastic modulus and thickness of the road layers influence the crack tip parameters(KⅠ, KⅡ and T-stress) significantly. It was also found that for the cases that the vehicle wheel is positioned near the crack plane, only the shear deformation mode is observed at the crack tip;while, for the vehicle wheel positions far from the crack, only the opening mode is observed, and between these positions, both the opening and shear deformation modes(i.e., mixed mode Ⅰ/Ⅱ) are observed at the crack tip.展开更多
In this paper, the influence of soil liquefaction on the vertical pressure of submarine pipeline was investigated under the wave loading through the wave flume test. The experiment was set with the same waves on the l...In this paper, the influence of soil liquefaction on the vertical pressure of submarine pipeline was investigated under the wave loading through the wave flume test. The experiment was set with the same waves on the liquefied seabed and unliquefled seabed respectively, and the current pipeline vertical pressure was measured with the pressure transducers installed on the two opposite directions (i.e., straight up and straight down) at the same cross-section of the pipeline. The results showed that when the seabed was unliquefied, the two pressure curves varied periodically and overlapped completely, reaching the maximum and minimum at the same time respectively, and the resultant pressure fluctuated within a limited range. However, when the seabed was liquefied, the two pressure curves varied periodically, but they did not overlap completely. They did not reach the maximum (minimum) value at the same time either, and the resultant pressure fluctuated within a wider range. The experiment showed that the submarine stood higher resultant pressure in the vertical direction when the seabed was liquefied, which may cause the frequent sinking and fioatation of the pipeline, leading to its fatigue damage.展开更多
An analytical solution is derived from the generalized governing equations of equal-strain consolidation with vertical drains under multi-ramp surcharge preloading. The hydraulic boundary conditions at both top and bo...An analytical solution is derived from the generalized governing equations of equal-strain consolidation with vertical drains under multi-ramp surcharge preloading. The hydraulic boundary conditions at both top and bottom of the consolidating soil are modelled as impeded drainage. The impeded drainage is described by using the third type boundary condition with a characteristic factor of drainage efficiency. Fully drained and undrained boundary conditions can also be modelled by applying an infinite and a zero characteristic factor, respectively. Simultaneous radial and vertical flow conditions are considered, together with the effects of drain resistance and smear. An increase in total stress due to multi-ramp loading is reasonably modelled as a function of both time and depth. A solution to calculate excess pore-water pressure at any arbitrary point in soil is derived, and the overall average degree of consolidation is obtained. It shows that the proposed solution can be used to analyze not only vertical-drain consolidation but also one-dimensional consolidation under either one-way or two-way vertical drainage conditions. The characteristic factors of drainage efficiency of top and bottom boundaries have a potentially important influence on consolidation. The boundary may be considered fully drained when the characteristic factor is greater than 100 and fully undrained when the characteristic factor is less than 0.1. The stress distribution along depth induced by the surcharge loading has a limited effect on the overall average degree of consolidation.展开更多
The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of h...The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of horizontal divergence in current kinematics methods during the integration for calculating vertical velocity,and consequently avoids its subsequent correction.In addition,through modifications of the continuity equations,it shows that the vorticity of the vertical shear vector(VVSV) is proportional to-ω,the vertical velocity in p coordinates.Furthermore,if the change of ω in the horizontal direction is neglected,the vorticity of the horizontal vorticity vector is proportional to-ω.When ω is under a fluctuating state in the vertical direction,the updraft occurs when the vector of horizontal vorticity rotates counterclockwise;the downdraft occurs when rotating clockwise.The validation result indicates that the present method is generally better than the vertical velocity calculated by the ω equation using the wet Q-vector divergence as a forcing term,and the vertical velocity calculated by utilizing the kinematics method is followed by the O'Brien method for correction.The plus-minus sign of the vertical velocity obtained with this method is not correlated with the intensity of d BZ,but the absolute error increases when d BZ is >=40.This method demonstrates that it is a good reflection of the direction of the vertical velocity.展开更多
Variation in intermediate water salinity in the South China Sea (SCS) between the 1960s and 1980s was studied using historical hydrographic data. The results demonstrate that the water was significantly fresher in the...Variation in intermediate water salinity in the South China Sea (SCS) between the 1960s and 1980s was studied using historical hydrographic data. The results demonstrate that the water was significantly fresher in the 1980s than in the 1960s, indicating that vertical mixing at intermediate water depth was reduced in the 1980s. This was partially because of the change of the SCS meridional overturning circulation (MOC) connecting local intermediate water with deep water. Data assimilation showed a 0.5Sv (1 Sv=10 6m 3/s) reduction in the strength of the MOC, which is about one third of the mean SCS MOC. Because the SCS MOC is linked to the Pacific Ocean, such an interdecadal variation in the intermediate water SCS may reflect anthropogenic climate change in the world ocean.展开更多
Using the four phases (1996~1999) of re-surveying data from the GPS network along the Shanxi fault zone, the recent state of horizontal movement of the fault zone and its relation with the Datong-Yanggao M5.6 earthqu...Using the four phases (1996~1999) of re-surveying data from the GPS network along the Shanxi fault zone, the recent state of horizontal movement of the fault zone and its relation with the Datong-Yanggao M5.6 earthquake (November 1, 1999), which took place on the north end of the monitored area, are analyzed. In the focal region, three areas with relatively higher strain (1×10 -6) appeared in Xinzhou and to the northeast of Jiexiu. The Shanxi fault zone is mainly controlled by the WNW-ESE-trending compressive stress field and the NNE-SSW-trending tensile stress field, and it does not have strike-slip movement. When examined for long-term tendency, attention should be paid to the junctures between the three moving elements.展开更多
To study the association of oxytocin (OT)'s distribution in hypothalamatic,pituitary and ovary,and understand how the OT secrete releasing in hypothalamus,pituitary and ovaries,the paraffin section immunohistochem...To study the association of oxytocin (OT)'s distribution in hypothalamatic,pituitary and ovary,and understand how the OT secrete releasing in hypothalamus,pituitary and ovaries,the paraffin section immunohistochemistry SuperPicTureTM two step method was used to detect the distribution of OT in hypothalamatic-pituitary-ovary axis of five femal Guangxi local buffalo. The test results could provide morphology according to study the OT's synthesis and mechanism of action,and could play reference and directions part in breeding Guangxi local buffalo. The test results display:oxytocin immuno reactive (OT-IR) neuronsw eremainly distributed arcuate nucleus,supraoptic nucleus and paraventricular nucleus,and OT-IR neurons was also found in ventromedial nucleus,ventrolateralis nucleus,suprachiasmaticus nucleus,dorsomedial nucleus,mamillary body,anterior hypothalamic nucleus and so on. The OT immunoactive production was found in pituitary and few OT-IR nerve fibers extended to post pituitary from hypophyseal stalk and medium eminence. In ovaries,OT immunoactive productions were only distributed in germinal epithelium cells,granulosa cells and lutein cells. The OT was first discovered in singulorum link of hypothalamatic-pituitary-ovary axis of Guangxi local buffalo. The OT immunoactive neurons were first discovered in every main nucleus of Guangxi local buffalo hypothalamus,especially distributed in arcuate nucleus,supraoptic nucleus and paraventricular nucleus.展开更多
A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 Jul...A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 July was used as a representative case to reveal the dynamical mechanism for the QBWO of the YRV rainfall from the potential vorticity(PV)perspective and based on MERRA-2 reanalysis data.The quasi-biweekly YRV rainfall was found to depend closely on the QBWO of the upper-tropospheric South Asian high(SAH),with the SAH configuration modified by the southward-intruding midlatitude high PV stream along with southwestward-advected high PV,altering the divergent condition over the YRV.Quantitative diagnoses for the anomalous vertical motion demonstrated that,in the wet phase of the QBWO cycle,the upper-tropospheric southward-intruding high PV stream acted as a positive PV advection,while negative PV advection was generated due to the lower-tropospheric southerlies,thereby forming a positive vertical gradient of horizontal PV advection to induce evident isentropic-displacement ascending motion.On the other hand,the southward-intruding high PV stream extended downward to the middle troposphere,causing the isentropic surfaces to become more sloping,thus producing a strong isentropic-gliding ascending component.Subsequently,the stronger diabatic heating-related ascending motion was induced to generate positive rainfall anomalies over the YRV.The opposite situation arose in the dry phase,with weak descending motion in magnitude.展开更多
文摘Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.
基金Supported by the National Natural Science Foundation of China(60702003)the Aviation Science Foundation(20080852011)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20070287045)the NUAA Research Fundation(NS2010066)~~
文摘The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.
基金Supported by National Natural Science Foundation of China(31070421 )Human Resources and Social Security Department Students Abroad Science and Technology Activities Preferred Foundation (Human and Social Council Issued 2008-86)+8 种基金Talent Development Fund Project in Jilin Province (Jilin 2007-259)Jilin Province Science and Technology Development Project (20060577 )Technology Project Jilin Provincial Ministry of Education (20094352006113 20071692010150)The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2005-546)Changchun Normal University Natural Science Foundation(2009002)Northeast Normal University Natural Science Foundation for Young Scholar(20050406)~~
文摘[Objective] The research aimed to investigate the bioturbation effects of Branchiura sowerbyi (Tubificidae) on the vertical transport of sedimentary particles in paddy field,and explore the bioturbation effects and mechanism of benthic Annelida in coupling process of benthic-pelagic interface.[Method]Using chemically stable glass beads as tracers,the vertical transport of sedimentary particles in paddy field was analyzed comparatively with and without B.sowerbyi.[Result]After 10 days' bioturbation of B.sowerbyi,41.3% of the glass beads on the surface of sedimentary particles were transferred downward to the maximum depth of 9.4 cm,and the vertical transportation rate of sedimentary particles was 1.370×10-3/(g·cm2·d). 25.8% and 17.3% of glass beads at a depth of 6 cm were transferred upwards and downwards respectively after bioturbation,to the maximum depth of 5.2 and 2.7 cm respectively,and the vertical transportation rates of sedimentary particles were 8.557×10-4 and 5.738×10-4/(g·cm2·d) respectively.[Conclusion]The sedimentary particles on the surface and deep layer of the paddy field were vertically shifted by the physical activities of B.sowerbyi,thus changed the sedimentary environment.
基金Supported by National Natural Science Foundation of China(50908116 )211 Foundation of Nanjing Normal University(2009112XGQ0054)+1 种基金Jiang su High-funded Construction ProjectsMajor Project of Jiangsu Provincial Department of Education(2009105TSJ0165)~~
文摘The combination method of intermittent influent and vertical flow wetlands (VFW) was used in the test to treat the domestic wastewater. Four artificial wetlands including Typha latifolia wetland,Phragmites australis (P.H.) wetland,polyculture wetlands (Typha latifolia and Phragmites australis) and non-vegetation wetland were established in the test. The effects of hydraulic retention time (HRT) and plant species on pollutants removal efficiencies were studied. The results showed that when HRT=7,the treatment efficiencies of wetlands with plants for the removal of TN and NH+4-N were up to 99.65% and 99.58%,respectively. For the control wetland,TN removal efficiency was up to 87.9% when HRT were 6 days,and NH+4-N removal efficiency was up to 91.8% when HRT were 5 days. TP removal efficiencies of four wetlands were higher than 93% when HRT was 6 days. Through the studies on different plants,it was found that vegetation wetlands had better nitrogen removal efficiency than non-vegetation wetland. The treatment efficacy of Phragmites australis wetland and polyculture wetland was better than Typha latifolia wetland.
基金Supported by National Natural Science Foundation of China(41071214)~~
文摘[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulated vertical flow arti-ficial wetland, set four hydraulic load level at 50, 100, 150 and 200 cm/d, to identify the impact of hydraulic loading on wetland clogging and to explore the factors run-ning threshold. [Result] The results show that the different levels of hydraulic loading have greater impact; in the constructed wetland clogging process under high hy-draulic loading of 200 cm/d, the effective life was only six months, and the single factor can be speculated that the threshold of the hydraulic load should be at 100-150 cm/d; system can last for six months at low hydraulic loading and last for three months at medium hydraulic load. [Conclusion] The research provides references for wetland clogging experiments in future.
基金Projects 2007CB209400 supported by the National Basic Research Program of China, 5057409050634050 by the National Natural Science Foundation of China
文摘In order to study the movement characteristics of groundwater in a deep mining area and solve the dispute of the distri- bution rule of hydro-chemical zoning which is contradicted by lixiviation water zoning in a horizontal direction, we directed our attention to the source of deep groundwater, its seepage and hydro-chemical characteristics in a typical mining area. We used a neotectonic water-control theory, chemical and isotope methods, as well as a method for analyzing dynamic groundwater conditions. The results indicate that 1) Karst water in the deep and medium parts of this mining area is recharged by vertical leakage through neotectonic fractures rather than seepage along strata from subcrop parts or surrounding flows; 2) from surface to deep leakage paths, the variation in the types of chemical groundwater agrees with the normal lixiviation water distribution rule and the age of mixed groundwater increases; 3) the water-rich zones along neotectonic fractures correspond with water-diluted zones in a hori-zontal direction; 4) the leakage coefficient and water capacity of aquifers increases during the flow process of Karst water along the antidip direction (from west to east) and 5) Karst water in shallow mining areas forms a strong runoff belt along strikes and quickly dilutes the water from deep and medium mining areas. Overall, chemical and dynamic water characteristics actually agree with in terms of the entire consideration for differences in vertical leakage and abnormalities in the zone of water chemical distribution, along a horizontal runoff direction.
基金supported by the Specific Research of China Institute of Water Resources and Hydropower Research (Grant Nos. Fangji 1240)Chinese Ministry of Water Resources (Grant Nos. 201301058 and 20131059)the Basic Research Fund for Central Public Research Institutes (Grant No. CKSF2015010/TB)
文摘In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process of flash flood. However, little attention was paid on bearing body of hazard, the clusters of buildings. Thus the real disaster mechanism of flash flood remains unclear.Accordingly, based on the experiments of artificial flash floods in a conceptual solid model, this paper focuses on the flood-impacted inundation characteristics of the building clusters at different locations of the gully model, in order to obtain a better understanding of the disaster process and the interaction between the flash floods and building clusters. The results showed that, in a typical smallscale flash flood gully with hot and dry climate, 1)clusters of buildings on an alluvial fan could reduce about 35% of the flooding area by blocking the diffusion of the flood to the depression areas, and could also promote the deposition in lower reaches of the river channel by blocking the overbank flow from going back into the channel, making the width-depth ratio of the channel larger. 2) The flash flood rates of disaster and hazard on the alluvial fan are generally higher than that of the inner gully. For the inner gully,buildings located on the beaches along the lower river and the transitional areas of the straight channel and channel bends can easily be affected because of their lower elevations. For the alluvial fan, buildings nearby the meanders suffer the greatest impacts because of bank collapsing and flooding. 3) The safe vertical distance from a building to the river channel is 13 m for the buildings in the inner gully under extreme floods. Below this threshold, the smaller the vertical distance is, the greater the risk exposure is. For the buildings on the alluvial fan, especially for the buildings near the concave bank of the top rush point,the horizontal distance is more important, and the safe value is 80 m under extreme floods.
文摘To investigate effect of the soluble epidermal growth factor receptor (sEGFR/sErbB1) level in the periph-eral blood in development, invasiveness, apoplexy of each type of pituitary tumor. Methods The sEGFR level was determined in peripheral serum from 190 patients with pituitary diseases by enzyme linked immunosobent assay. The sEGFR levels were measured in 10 pituitary Rathke’s pouch, 18 pituitary hyperplasia, 161 pituitary adenomas including 30 microadenomas, 83 large adenomas, 48 giant adenomas, 1 pituitary carcinoma, and 28 hea-lthy controls. Results In the patients with pituitary hyperplasia, microadenoma, large adenoma, giant adenoma, and pituitary carci-noma, the sEGFR level was 188.92 ± 32.62, 209.83 ± 19.01, 333.20 ± 69.33, 405.85 ± 37.38, and 617.45 fmol/mL indepen-dently. They were all significantly higher than patients with pituitary Rathke’s pouch (156.78 ± 18.24 fmol/mL, P < 0.001) and healthy control group (159.11 ± 40.50 fmol/mL, P < 0.05). The sEGFR level in pituitary carcinoma was higher than pi-tuitary adenoma. In patients with pituitary adenoma, the sEGFR level was positive correlated to the size of pituitary adeno-mas (r = 0.998), the significant difference was observed for the sEGFR level in each group of the patients with pituitary adenomas (P < 0.001). Furthermore, in patients with pituitary ACTH-secreting microadenomas, the serum sEGFR levels in invasiveness (295.00 ± 77.80 fmol/mL) was higher than that in non-invasiveness (210.60 ± 16.4 fmol/mL, P < 0.05). In pati-ents with pituitary ACTH-secreting, PRL-secreting, GH-secreting, and non-functioning large adenomas, the serum sEGFR levels in invasiveness (407.86 ± 28.50, 399.25 ± 30.10, 386.00 ± 13.08, and 369.25 ± 36.70 fmol/mL) was higher than that in non-invasiveness (335.25 ± 63.49, 300.64 ± 47.57, 297.00 ± 61.93, and 269.30 ± 25.68 fmol/mL) respectively (P < 0.05). In patients with invasive pituitary PRL-secreting, GH-secreting, and non-functioning giant adenomas, the serum sEGFR levels not significantly different in between invasiveness (417.50 ± 35.94, 409.50 ± 69.14, and 417.50 ± 44.13 fmol/mL) and non-invasiveness (386.00 ± 49.64, 417.50 ± 44.03, and 409.51 ± 35.17 fmol/mL) (P > 0.05). In patients with pituitary large adeno-mas, the sEGFR levels in pituitary apoplexy (377.48 ± 39.18 fmol/mL) was higher than that in non-pituitary apoplexy (343.18 ± 68.17 fmol/mL, P > 0.05). Conclusions The increased level of peripheral serum sEGFR is concomitant with development, proliferous size of the adenomas in patients with pituitary adenomas. In addition, the elevated levels of serum sEGFR occur in pituitary apoplexy as clinical active tumors, and the non-invasive ACTH secreting adenomas. The sEGFR levels could be differen-tiated helpfully between pituitary adenomas and non-pituitary adenomas. These data suggest that serum sEGFR could be as a referable marker of the size and activation of proliferation in pituitary adenoma.
基金The project supported by National Natural Science Foundation of China under Grant No.10626016China Postdoctor Science Foundation of Henan University under Grant No.05YBZR014
文摘We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizontal and vertical complexes are introduced with the total differential map and vertical exterior derivative. As the application of the differential calculus, we derive the schemes with the conservation of symplecticity and energy for Hamiltonian system and a two-dimensional integral models with infinite sequence of conserved currents. Then an Euler-Lagrange cohomology with symplectic structure-preserving is given in the discrete classical mechanics.
基金Projects (51179038,51309067) supported by the National Natural Science Foundation of China
文摘The problem of diving control for an underactuated unmanned undersea vehicle(UUV) considering the presence of parameters perturbations and wave disturbances was addressesed.The vertical motion of an UUV was divided into two noninteracting subsystems for surge velocity control and diving.To stabilize the vertical motion system,the surge velocity and the depth control controllers were proposed using backstepping technology and an integral-fast terminal sliding mode control(IFTSMC).It is proven that the proposed control scheme can guarantee that all the error signals in the whole closed-loop system globally converge to the sliding surface in finite time and asymptotically converge to the origin along the sliding surface.With a unified control parameters for different motion states,a series of numerical simulation results illustrate the effectiveness of the above designed control scheme,which also shows strong robustness against parameters perturbations and wave disturbances.
基金the National Natural Science Foundation of China (Grant Nos.41601296,41571278 and 41771321)China Postdoctoral Science Foundation (Grant No.2016M592720)+1 种基金Applied Basic Research Foundation of Yunnan Province (Grant No.2016FD011)Sichuan Science and Technology Program (2018SZ0132)
文摘Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.
文摘In this paper, a four-layered road structure containing a top-down crack is investigated by performing finite element analyses in ABAQUS. In this study, in addition to the vertical load of a vehicle wheel, the horizontal load as well as its position with respect to the crack is also considered in the analyses, and the crack tip parameters including stress intensity factors(SIFs) and T-stress are then calculated. Moreover, influence of elastic modulus and thickness of the pavement layers on the crack tip parameters is studied. Results show that the horizontal and vertical loads along with their position with respect to the crack, elastic modulus and thickness of the road layers influence the crack tip parameters(KⅠ, KⅡ and T-stress) significantly. It was also found that for the cases that the vehicle wheel is positioned near the crack plane, only the shear deformation mode is observed at the crack tip;while, for the vehicle wheel positions far from the crack, only the opening mode is observed, and between these positions, both the opening and shear deformation modes(i.e., mixed mode Ⅰ/Ⅱ) are observed at the crack tip.
基金supported by the grant from the National Natural Science Foundation of China (No. 41076021)
文摘In this paper, the influence of soil liquefaction on the vertical pressure of submarine pipeline was investigated under the wave loading through the wave flume test. The experiment was set with the same waves on the liquefied seabed and unliquefled seabed respectively, and the current pipeline vertical pressure was measured with the pressure transducers installed on the two opposite directions (i.e., straight up and straight down) at the same cross-section of the pipeline. The results showed that when the seabed was unliquefied, the two pressure curves varied periodically and overlapped completely, reaching the maximum and minimum at the same time respectively, and the resultant pressure fluctuated within a limited range. However, when the seabed was liquefied, the two pressure curves varied periodically, but they did not overlap completely. They did not reach the maximum (minimum) value at the same time either, and the resultant pressure fluctuated within a wider range. The experiment showed that the submarine stood higher resultant pressure in the vertical direction when the seabed was liquefied, which may cause the frequent sinking and fioatation of the pipeline, leading to its fatigue damage.
基金Project(51278171)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by Program of Introducing Talents of Discipline to Universities("111" Project),ChinaProject(2014B04914)supported by the Fundamental Research Funds for the Central Universities of China
文摘An analytical solution is derived from the generalized governing equations of equal-strain consolidation with vertical drains under multi-ramp surcharge preloading. The hydraulic boundary conditions at both top and bottom of the consolidating soil are modelled as impeded drainage. The impeded drainage is described by using the third type boundary condition with a characteristic factor of drainage efficiency. Fully drained and undrained boundary conditions can also be modelled by applying an infinite and a zero characteristic factor, respectively. Simultaneous radial and vertical flow conditions are considered, together with the effects of drain resistance and smear. An increase in total stress due to multi-ramp loading is reasonably modelled as a function of both time and depth. A solution to calculate excess pore-water pressure at any arbitrary point in soil is derived, and the overall average degree of consolidation is obtained. It shows that the proposed solution can be used to analyze not only vertical-drain consolidation but also one-dimensional consolidation under either one-way or two-way vertical drainage conditions. The characteristic factors of drainage efficiency of top and bottom boundaries have a potentially important influence on consolidation. The boundary may be considered fully drained when the characteristic factor is greater than 100 and fully undrained when the characteristic factor is less than 0.1. The stress distribution along depth induced by the surcharge loading has a limited effect on the overall average degree of consolidation.
基金National Key Basic Research Development Program"973"(2013CB430103,2009CB421503)National Natural Science Funding(41375058,41530427)State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2015LASW-A07)
文摘The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of horizontal divergence in current kinematics methods during the integration for calculating vertical velocity,and consequently avoids its subsequent correction.In addition,through modifications of the continuity equations,it shows that the vorticity of the vertical shear vector(VVSV) is proportional to-ω,the vertical velocity in p coordinates.Furthermore,if the change of ω in the horizontal direction is neglected,the vorticity of the horizontal vorticity vector is proportional to-ω.When ω is under a fluctuating state in the vertical direction,the updraft occurs when the vector of horizontal vorticity rotates counterclockwise;the downdraft occurs when rotating clockwise.The validation result indicates that the present method is generally better than the vertical velocity calculated by the ω equation using the wet Q-vector divergence as a forcing term,and the vertical velocity calculated by utilizing the kinematics method is followed by the O'Brien method for correction.The plus-minus sign of the vertical velocity obtained with this method is not correlated with the intensity of d BZ,but the absolute error increases when d BZ is >=40.This method demonstrates that it is a good reflection of the direction of the vertical velocity.
基金Supported by the National Basic Research Program of China (973Program) (No. 2011CB403504)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)the National Natural Science Foundation of China (No. 40806003)
文摘Variation in intermediate water salinity in the South China Sea (SCS) between the 1960s and 1980s was studied using historical hydrographic data. The results demonstrate that the water was significantly fresher in the 1980s than in the 1960s, indicating that vertical mixing at intermediate water depth was reduced in the 1980s. This was partially because of the change of the SCS meridional overturning circulation (MOC) connecting local intermediate water with deep water. Data assimilation showed a 0.5Sv (1 Sv=10 6m 3/s) reduction in the strength of the MOC, which is about one third of the mean SCS MOC. Because the SCS MOC is linked to the Pacific Ocean, such an interdecadal variation in the intermediate water SCS may reflect anthropogenic climate change in the world ocean.
文摘Using the four phases (1996~1999) of re-surveying data from the GPS network along the Shanxi fault zone, the recent state of horizontal movement of the fault zone and its relation with the Datong-Yanggao M5.6 earthquake (November 1, 1999), which took place on the north end of the monitored area, are analyzed. In the focal region, three areas with relatively higher strain (1×10 -6) appeared in Xinzhou and to the northeast of Jiexiu. The Shanxi fault zone is mainly controlled by the WNW-ESE-trending compressive stress field and the NNE-SSW-trending tensile stress field, and it does not have strike-slip movement. When examined for long-term tendency, attention should be paid to the junctures between the three moving elements.
基金Supported by Guangxi Scientific Fund Project (Guikezi0991042, Guikezi 0640015 and Guikezi 0832043)Guangxi Area Education Department Educational and Scientific Layout Project (C, 2006C3)+1 种基金Guangxi Education Department Scientific Research Fund (200709LX075)Guangxi Large Apparatus Collaborated Sharing Net~~
文摘To study the association of oxytocin (OT)'s distribution in hypothalamatic,pituitary and ovary,and understand how the OT secrete releasing in hypothalamus,pituitary and ovaries,the paraffin section immunohistochemistry SuperPicTureTM two step method was used to detect the distribution of OT in hypothalamatic-pituitary-ovary axis of five femal Guangxi local buffalo. The test results could provide morphology according to study the OT's synthesis and mechanism of action,and could play reference and directions part in breeding Guangxi local buffalo. The test results display:oxytocin immuno reactive (OT-IR) neuronsw eremainly distributed arcuate nucleus,supraoptic nucleus and paraventricular nucleus,and OT-IR neurons was also found in ventromedial nucleus,ventrolateralis nucleus,suprachiasmaticus nucleus,dorsomedial nucleus,mamillary body,anterior hypothalamic nucleus and so on. The OT immunoactive production was found in pituitary and few OT-IR nerve fibers extended to post pituitary from hypophyseal stalk and medium eminence. In ovaries,OT immunoactive productions were only distributed in germinal epithelium cells,granulosa cells and lutein cells. The OT was first discovered in singulorum link of hypothalamatic-pituitary-ovary axis of Guangxi local buffalo. The OT immunoactive neurons were first discovered in every main nucleus of Guangxi local buffalo hypothalamus,especially distributed in arcuate nucleus,supraoptic nucleus and paraventricular nucleus.
基金jointly supported by the Strategic Priority Re-search Program of the Chinese Academy of Sciences[grant number XDB40000000]the National Key Research and Development Program of China[grant number 2018YFC1506004]the National Natural Science Foundation of China[grant numbers 41730963 and 41876020].
文摘A series of heavy rainfall events occurred over the Yangtze River Valley(YRV)in summer 2014,which were modulated by the 10-20-day quasi-biweekly oscillation(QBWO).Thus,the strongest QBWO cycle for the period 10-24 July was used as a representative case to reveal the dynamical mechanism for the QBWO of the YRV rainfall from the potential vorticity(PV)perspective and based on MERRA-2 reanalysis data.The quasi-biweekly YRV rainfall was found to depend closely on the QBWO of the upper-tropospheric South Asian high(SAH),with the SAH configuration modified by the southward-intruding midlatitude high PV stream along with southwestward-advected high PV,altering the divergent condition over the YRV.Quantitative diagnoses for the anomalous vertical motion demonstrated that,in the wet phase of the QBWO cycle,the upper-tropospheric southward-intruding high PV stream acted as a positive PV advection,while negative PV advection was generated due to the lower-tropospheric southerlies,thereby forming a positive vertical gradient of horizontal PV advection to induce evident isentropic-displacement ascending motion.On the other hand,the southward-intruding high PV stream extended downward to the middle troposphere,causing the isentropic surfaces to become more sloping,thus producing a strong isentropic-gliding ascending component.Subsequently,the stronger diabatic heating-related ascending motion was induced to generate positive rainfall anomalies over the YRV.The opposite situation arose in the dry phase,with weak descending motion in magnitude.