The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration ...The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration of water quality of the Yangtze, bringing about many bad effects on people’s life and production. Through a comprehensive analysis of water quality of the Yangtze River through Jiangsu Province, we investigated the reasons for the deterioration of its water quality, and explored countermeasure to maintain good water quality in the Yangtze with the objective to provide safe and reliable drinking water sources for people.展开更多
The primary objective of this study is to evaluate the physico-chemical qualities and the organic pollution of two dams--Hammam Grouz and Beni-Haroun, as well as that of Rhumel river. The latter, which feeds the dams ...The primary objective of this study is to evaluate the physico-chemical qualities and the organic pollution of two dams--Hammam Grouz and Beni-Haroun, as well as that of Rhumel river. The latter, which feeds the dams is an important water source in the geographical region of the Constantinois. The presence of the stations of filtration and purification has not been sufficient to minimize the effect of the waste discharges released from various agglomerations. Five site points were selected in strategic locations where samples have been collected monthly during 2009. Multiple physico-chemical assessments have been conducted. The parameters determined have revealed that the quality of waters for the two dams is fair. The level of organic pollution is more pronounced in the waters of Hammam Grouz dam compared to that of Beni Haroun. This may be attributed to animal debris--very important organic content, which is a characteristic of the peripheral waters of the first dam (Hammam Grouz). On the other hand, the waters of the Rhumel river were assessed of mediocre quality, reflecting the presence of organic pollution.展开更多
Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regim...Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regime of the Semani and Vjosa River is analyzed. These are two rivers with total different hydro-geological characteristics. Vjosa river watershed is mainly composed of massif calcareous rocks that are streaky and karstifled. A totally different view is in the other river, in Seman where the impermeable rocks dominate. Even the distribution of the precipitation is quite different. In the Vjosa River the amount of the precipitation varies from 1,500 mm to 2,500 mm per year and in Semani River only 1,100 mm per year. The flow in the wet period is mainly a result of the precipitation and the minimum discharge occurs during the dry period representing the base flow that is the contribution from the groundwater. In this point of view the flow in the dry period is also an indicator of the underground water resource. During the dry period the watershed gives what it received and what has cumulated during the wet period. This is more evident in the case of a karstic watershed. The recession curves were analysed for all the hydrometric stations in both river basins and the parameters of these curves are evaluated. These results are analyzed and compared between the two different watersheds reflecting the differences on water exchange of surface and ground water. Finally, an assessment of groundwater resources in both hydro geological basins is worked out.展开更多
Based on the observed data in monitored drainage areas and GIS spatial analysis tools,watershed basic database of Shitoukoumen Reservoir Basin was built.The multivariate analysis and redundancy analysis(RDA) were used...Based on the observed data in monitored drainage areas and GIS spatial analysis tools,watershed basic database of Shitoukoumen Reservoir Basin was built.The multivariate analysis and redundancy analysis(RDA) were used to analyze the spatial and temporal variations of water quality,identify the key environmental factors and their patterns influencing the spatial variation of water quality,and determine the main types and forms of the non-point source(NPS) pollutant export controlled by the key environmental factors.The results show that different patterns of environmental factors lead to great changes in water quality at spatial and seasonal scales.All selected environmental factors explain 64.5% and 68.2% of the spatial variation of water quality over dry season and rainy season,respectively,which shows clear seasonal difference.Over dry season,residential land is the most important environmental factor,which possesses 35.4% of the spatial variation,and drainage area is the second key environmental factor,which possesses 17.0% of spatial variation in the total variance.Over rainy season,slope length and drainage area are the key environmental factors,which possess 29.3% of the spatial variation together.Residential land influences nitrogen export by changing NH4+-N and particulate organic nitrogen(PON) discharge over dry season,and drainage area controls phosphorus export by regulating dissolved phosphorus(DP) drainage over dry season and phosphorus associated particulate(PAP) loss over rainy season,respectively.Although slope length is an important environmental factor,it does not influence NPS pollutant export.It is interesting that soil organic matter,as a minor environmental factor,highly determines phosphorus and nitrogen export by enhancing the DP,PAP and PON loss.展开更多
Hydrographical parameters and phytoplankton assemblages were determined along the Pondicherry, Parangipettai and Nagapattinam coastal waters, southeast coast of India. All the hydrographical parameters such as sea sur...Hydrographical parameters and phytoplankton assemblages were determined along the Pondicherry, Parangipettai and Nagapattinam coastal waters, southeast coast of India. All the hydrographical parameters such as sea surface temperature, salinity, p H, total alkalinity, dissolved oxygen and nutrients like nitrate, nitrite, inorganic phosphate and reactive silicate, chlorophyll a and phytoplankton assemblages were studied for a period of five months(May, August, September 2010, March and November 2011). Over 121 species of phytoplankton represented by 93 species of diatoms, 16 species of dinoflagellates, 9 species of blue-green algae, 2 species of greens and 1 species of silicoflagellate were recorded. High phytoplankton species diversity was found in March 2011 when salinity and nitrate concentrations were low and reactive silicate and inorganic phosphates were moderate. Species diversity was low during May 2010 when increased sea surface temperature, salinity and low nutrients availability were observed. Coscinodiscus centralis, Diatoma vulgaris and Proboscia alata were dominant, especially Coscinodiscus sp. distributed in all stations whereas Skeletonema costatum, Odontella sinensis and Ditylum brightwellii were abundant in August and September 2010. From principal component analysis and multiple regression analysis, it is evident that variables like sea surface temperature and dissolved oxygen are the most important factors influencing the seasonal pattern of phytoplankton population.展开更多
The subsided water areas with different times of subsidence are chosen to monitor the physicochemical indexes and heavy metal elements. The results indicate that subsided water areas are polluted in different degree. ...The subsided water areas with different times of subsidence are chosen to monitor the physicochemical indexes and heavy metal elements. The results indicate that subsided water areas are polluted in different degree. Some physicochemical indexes of subsided water areas are increased with the development of the subsidence and are changed with the changing of the season. The concentration of As, Cd, Cu, Pb, Se, Zn of subsided water areas is less than national fishery, and surface water quality standards of China , except Hg. And the quality of subsided water hasn't been polluted by heavy metal seriously. Analyzing and appraising the quality of the subsided water can give a reasonable data as basis in using the subsided water resource.展开更多
This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological stru...This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.展开更多
Guanting Reservoir(GR) is one of the most important water sources for Beijing and neighboring regions.Due to water pollution,it was withdrawn from the system to supply Beijing drinking water;however,after a thorough...Guanting Reservoir(GR) is one of the most important water sources for Beijing and neighboring regions.Due to water pollution,it was withdrawn from the system to supply Beijing drinking water;however,after a thorough treatment process,GR was made a reserve water source since 2007.To develop a comprehensive and quantitative analysis of water yield and purification services in the GR watershed,this study selected two time periods:the period when GR was withdrawn from the system supplying local drinking water and the period that it has been designated a reserve water source.The In VEST model was used to evaluate the quantities of water yields,and total nitrogen and total phosphorus outputs from 1995 to 2010 Additionally,the spatiotemporal variations of water yield services and water quality purification services in the GR watershed were analyzed.The results showed that water yield services in the GR watershed first weakened and then became stronger,but weakened overall during the years 1995 to 2010.Water yield capacity in the basin decreased from 1.89×10^9 m3 in 1995 to 1.43×10^9 m3 in 2010(a drop of 24.0% in total).Water quality purification services also showed the same tendency.Total nitrogen output decreased from 4028.7 t in 1995 to 3611.4 t in 2010,while total phosphorus decreased from 379.7 t in 1995 to 354.0 t in 2010.Nitrogen and phosphorus purification services were enhanced by 10.4% and 6.8%,respectively.Changes in the climate and land use were the main factors which lead to the changes in the water yield service in the GR watershed.Policies intended to protect water resource have matched the varying trends of water quality purification services during different periods.On one hand,the research results provide a foundation to identify key fields for eco-compensation in the Guanting Reservoir basin.On another hand,the ecosystem service value will increase on the basis of eco-compensation criteria through setting the scenarios of returning farmland to forest and ecological protection.This method directly reflects increases in ecosystem service values that have occurred since measures to protect the ecological environment have been implemented.This method is more persuasive and feasible than using eco-compensation criteria based on regional ecosystem service values determined by land use/coverage type.It can provide a new way to assess eco-compensation in the Guanting Reservoir basin and other regions.展开更多
基金Jiangsu Suxie Academy of Environmental Technology for its support for the program"Study on the linkage system for emergency monitoring of water sources of the Yangtze River"(No.1203)~~
文摘The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration of water quality of the Yangtze, bringing about many bad effects on people’s life and production. Through a comprehensive analysis of water quality of the Yangtze River through Jiangsu Province, we investigated the reasons for the deterioration of its water quality, and explored countermeasure to maintain good water quality in the Yangtze with the objective to provide safe and reliable drinking water sources for people.
文摘The primary objective of this study is to evaluate the physico-chemical qualities and the organic pollution of two dams--Hammam Grouz and Beni-Haroun, as well as that of Rhumel river. The latter, which feeds the dams is an important water source in the geographical region of the Constantinois. The presence of the stations of filtration and purification has not been sufficient to minimize the effect of the waste discharges released from various agglomerations. Five site points were selected in strategic locations where samples have been collected monthly during 2009. Multiple physico-chemical assessments have been conducted. The parameters determined have revealed that the quality of waters for the two dams is fair. The level of organic pollution is more pronounced in the waters of Hammam Grouz dam compared to that of Beni Haroun. This may be attributed to animal debris--very important organic content, which is a characteristic of the peripheral waters of the first dam (Hammam Grouz). On the other hand, the waters of the Rhumel river were assessed of mediocre quality, reflecting the presence of organic pollution.
文摘Water regime of Albanian rivers is a Mediterranean typical one. During the wet period, it flows 85%-90% of the annual flow and the dry period represents only 10%-15% of the annual amount. In this paper the water regime of the Semani and Vjosa River is analyzed. These are two rivers with total different hydro-geological characteristics. Vjosa river watershed is mainly composed of massif calcareous rocks that are streaky and karstifled. A totally different view is in the other river, in Seman where the impermeable rocks dominate. Even the distribution of the precipitation is quite different. In the Vjosa River the amount of the precipitation varies from 1,500 mm to 2,500 mm per year and in Semani River only 1,100 mm per year. The flow in the wet period is mainly a result of the precipitation and the minimum discharge occurs during the dry period representing the base flow that is the contribution from the groundwater. In this point of view the flow in the dry period is also an indicator of the underground water resource. During the dry period the watershed gives what it received and what has cumulated during the wet period. This is more evident in the case of a karstic watershed. The recession curves were analysed for all the hydrometric stations in both river basins and the parameters of these curves are evaluated. These results are analyzed and compared between the two different watersheds reflecting the differences on water exchange of surface and ground water. Finally, an assessment of groundwater resources in both hydro geological basins is worked out.
基金Under the auspices of Cooperation Program of Chinese Academy of Sciences and Jilin Province (No 2006SYHZ0025)Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-YW-126,KZCX2-YW-Q06-2)
文摘Based on the observed data in monitored drainage areas and GIS spatial analysis tools,watershed basic database of Shitoukoumen Reservoir Basin was built.The multivariate analysis and redundancy analysis(RDA) were used to analyze the spatial and temporal variations of water quality,identify the key environmental factors and their patterns influencing the spatial variation of water quality,and determine the main types and forms of the non-point source(NPS) pollutant export controlled by the key environmental factors.The results show that different patterns of environmental factors lead to great changes in water quality at spatial and seasonal scales.All selected environmental factors explain 64.5% and 68.2% of the spatial variation of water quality over dry season and rainy season,respectively,which shows clear seasonal difference.Over dry season,residential land is the most important environmental factor,which possesses 35.4% of the spatial variation,and drainage area is the second key environmental factor,which possesses 17.0% of spatial variation in the total variance.Over rainy season,slope length and drainage area are the key environmental factors,which possess 29.3% of the spatial variation together.Residential land influences nitrogen export by changing NH4+-N and particulate organic nitrogen(PON) discharge over dry season,and drainage area controls phosphorus export by regulating dissolved phosphorus(DP) drainage over dry season and phosphorus associated particulate(PAP) loss over rainy season,respectively.Although slope length is an important environmental factor,it does not influence NPS pollutant export.It is interesting that soil organic matter,as a minor environmental factor,highly determines phosphorus and nitrogen export by enhancing the DP,PAP and PON loss.
基金the University Grants Commission,Govt.of India,New Delhi for financial support through UGCResearch Award(No.F.30-1/2014(SA-II)/RA-2014-16-SCTAM-4364 dated 05/02/2015)
文摘Hydrographical parameters and phytoplankton assemblages were determined along the Pondicherry, Parangipettai and Nagapattinam coastal waters, southeast coast of India. All the hydrographical parameters such as sea surface temperature, salinity, p H, total alkalinity, dissolved oxygen and nutrients like nitrate, nitrite, inorganic phosphate and reactive silicate, chlorophyll a and phytoplankton assemblages were studied for a period of five months(May, August, September 2010, March and November 2011). Over 121 species of phytoplankton represented by 93 species of diatoms, 16 species of dinoflagellates, 9 species of blue-green algae, 2 species of greens and 1 species of silicoflagellate were recorded. High phytoplankton species diversity was found in March 2011 when salinity and nitrate concentrations were low and reactive silicate and inorganic phosphates were moderate. Species diversity was low during May 2010 when increased sea surface temperature, salinity and low nutrients availability were observed. Coscinodiscus centralis, Diatoma vulgaris and Proboscia alata were dominant, especially Coscinodiscus sp. distributed in all stations whereas Skeletonema costatum, Odontella sinensis and Ditylum brightwellii were abundant in August and September 2010. From principal component analysis and multiple regression analysis, it is evident that variables like sea surface temperature and dissolved oxygen are the most important factors influencing the seasonal pattern of phytoplankton population.
文摘The subsided water areas with different times of subsidence are chosen to monitor the physicochemical indexes and heavy metal elements. The results indicate that subsided water areas are polluted in different degree. Some physicochemical indexes of subsided water areas are increased with the development of the subsidence and are changed with the changing of the season. The concentration of As, Cd, Cu, Pb, Se, Zn of subsided water areas is less than national fishery, and surface water quality standards of China , except Hg. And the quality of subsided water hasn't been polluted by heavy metal seriously. Analyzing and appraising the quality of the subsided water can give a reasonable data as basis in using the subsided water resource.
文摘This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.
基金National Natural Science Foundation of China(51379084)National Key R&D Plan(2016YFC0503405)
文摘Guanting Reservoir(GR) is one of the most important water sources for Beijing and neighboring regions.Due to water pollution,it was withdrawn from the system to supply Beijing drinking water;however,after a thorough treatment process,GR was made a reserve water source since 2007.To develop a comprehensive and quantitative analysis of water yield and purification services in the GR watershed,this study selected two time periods:the period when GR was withdrawn from the system supplying local drinking water and the period that it has been designated a reserve water source.The In VEST model was used to evaluate the quantities of water yields,and total nitrogen and total phosphorus outputs from 1995 to 2010 Additionally,the spatiotemporal variations of water yield services and water quality purification services in the GR watershed were analyzed.The results showed that water yield services in the GR watershed first weakened and then became stronger,but weakened overall during the years 1995 to 2010.Water yield capacity in the basin decreased from 1.89×10^9 m3 in 1995 to 1.43×10^9 m3 in 2010(a drop of 24.0% in total).Water quality purification services also showed the same tendency.Total nitrogen output decreased from 4028.7 t in 1995 to 3611.4 t in 2010,while total phosphorus decreased from 379.7 t in 1995 to 354.0 t in 2010.Nitrogen and phosphorus purification services were enhanced by 10.4% and 6.8%,respectively.Changes in the climate and land use were the main factors which lead to the changes in the water yield service in the GR watershed.Policies intended to protect water resource have matched the varying trends of water quality purification services during different periods.On one hand,the research results provide a foundation to identify key fields for eco-compensation in the Guanting Reservoir basin.On another hand,the ecosystem service value will increase on the basis of eco-compensation criteria through setting the scenarios of returning farmland to forest and ecological protection.This method directly reflects increases in ecosystem service values that have occurred since measures to protect the ecological environment have been implemented.This method is more persuasive and feasible than using eco-compensation criteria based on regional ecosystem service values determined by land use/coverage type.It can provide a new way to assess eco-compensation in the Guanting Reservoir basin and other regions.