This study is aimed at identifying and determining the percentage of occurrence frequency of cellulose decomposing soil fungi. The soil samples were inoculated into culture plates prepared in Sabouraud medium under st...This study is aimed at identifying and determining the percentage of occurrence frequency of cellulose decomposing soil fungi. The soil samples were inoculated into culture plates prepared in Sabouraud medium under sterilized conditions and incubated at 30 ℃ for 4 to 7 d. The identified fungal species were incubated in self-designed cellulose medium for testing their cellulolytic ability. Forty-two species, including2 nova species, representing sixteen genera showed growth and sporulation in the cellulose medium. Most of the isolated species were from genus Aspergillus and Penicillium. Aspergillus niger and Mucor hiemalis showed highest occurrence frequency (45% and 36% respectively), as these species were collected from about 80% of soil samples. Being agar free and cheaper, the new fungal medium designed showed results equivalent to Sabouraud medium.展开更多
Protoplast isolation was relevant for gene manipulation in U lva, and universal protocols have been proposed based on evaluation for various wildly collected species. However, only clonal laboratory cultures were prac...Protoplast isolation was relevant for gene manipulation in U lva, and universal protocols have been proposed based on evaluation for various wildly collected species. However, only clonal laboratory cultures were practical for genetic transformation, and whether applicability of such universal protocol existed for these artificial cultures has never been investigated. In this research, samples in different physiological states or developmental stages were tested in U. prolifera. The results proved that the protoplast yields were strongly dependent on the characteristics of samples. Neither F_v/F_m value nor chlorophyll content exhibited an ideal correlation with the protoplast yields. Alternatively, specific growth rate, coupled with developmental stage, could serve as an ef fective combined index to determine the right time for protoplast isolation. According to this instruction, here we reported the highest yields of protoplast((31.5±1.9)×10~6 cells/g f. wt.) in U. prolifera, following comparison between protocols, and further optimizations on enzyme content, incubation period, starting biomass and pretreatment. This specified protocol for artificially cultured clonal samples could meet the need for protoplast-mediated genetic transformation in U. prolifera.展开更多
It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in th...It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp (Litopenaeus vannamei) intestines by using multiple selective media.The selected isolate STE was identified on the basis of its morphological, physiological,and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas.This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.展开更多
AIM: To analyze the upregulated CD133 expression in tumorigenesis of primary colon cancer cells. METHODS: Upregulated CD133 expression in tumorigenesis of colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 an...AIM: To analyze the upregulated CD133 expression in tumorigenesis of primary colon cancer cells. METHODS: Upregulated CD133 expression in tumorigenesis of colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 and SW620) was analyzed by flow cytometry. Human colon cancer tissue samples were stained with anti-human CD133. SW620 cells were sorted according to the CD133 expression level measured by fluorescence-activated cell sorting. Spheroids of colorectal cancer cells were cultured with the hanging drop. Expression of CD133 and Lgr5 in spheroids of colorectal cancer cells and monolayer culture was detected by RT-qPCR. Spheroids of colorectal cancer cells were analyzed using anti-human CD133 with immunohistochemical staining. RESULTS: CD133 antigen was expressed in colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 and SW620) as well as in primary and metastatic human colon cancer tissues. However, the CD133 was differently expressed in these cell lines and tissues. The expression levels of CD133 and Lgr5 were significantly higher in spheroids of parental, CD133hi and CD133-cells than in their monolayer culture at the mRNA level (P < 0.05). Immunohistochemical staining of spheroids of CD133-cells showed that CD133 was highly expressed in colorectal cancer cell lines. CONCLUSION: Upregulated CD133 expression plays a role in tumorigenesis colorectal cancer cells, which may promote the expression of other critical genes that can drive tumorigenesis.展开更多
Mesenchymal stem cell differentiation towards osteogenic, chondrogenic and adipogenic lineages have been extensively described and reproduced in the literature. In contrast, cardiomyogenic differentiation still remain...Mesenchymal stem cell differentiation towards osteogenic, chondrogenic and adipogenic lineages have been extensively described and reproduced in the literature. In contrast, cardiomyogenic differentiation still remains largely controversial. In this study the authors aim to shed new light into this unclear phenomenon and test whether BMMSC (bone marrow mesenchymal stem cells) and ATMSC (adipose tissue derived mesenchymal stem cells) are able to differentiate into functional cardiomyocytes, investigating two differentiation protocols. AT and BMMSC behaved differently when cultured in differentiation media and presented lower levels of proliferation and alkaline phosphatase production, expression of cardiomyocyte-specific transcription factors such as GATA-4, Nkx2-5 and proteins such as ct and 13 Myosin Heavy Chains. Furthermore, MSC started to express higher levels of Connexin-43 and c~ sarcomeric actinin protein. Unfortunately, though, MSC did not present cardiomyocyte-like electrophysiological properties. In order to analyze a possible explanation for such limited plasticity, the authors decided to address the issue using a quantitative approach. Gene expression was quantified by Real time PCR, and, for the first time, the authors show that a possible explanation for limited plasticity of MSC is that even though differentiated cells presented differential gene expression, the levels of key cardiomyogenic genes did not reach expression levels presented by adult cardiomyocytes, nor were maintained along differentiation, reaching peaks at 4 days of stimulation, and decaying thereafter.展开更多
Disposal of chromium (Cr) hexavalent form, Cr(Ⅵ), in soils as additions in organic fertilizers, liming materials or plant nutrient sources can be dangerous since Cr(Ⅵ) can be highly toxic to plants, animals, a...Disposal of chromium (Cr) hexavalent form, Cr(Ⅵ), in soils as additions in organic fertilizers, liming materials or plant nutrient sources can be dangerous since Cr(Ⅵ) can be highly toxic to plants, animals, and humans. In order to explore soil conditions that lead to Cr(Ⅵ) generation, this study were performed using a Paleudult (Dystic Nitosol) from a region that has a high concentration of tannery operations in the Rio Crande do Sul State, southern Brazil. Three laboratory incubation experiments were carried out to examine the influences of soil moisture content and concentration of cobalt and organic matter additions on soil Cr(Ⅵ) formation and release and manganese (Mn) oxide reduction with a salt of chromium chloride (CrCl3) and tannery sludge as inorganic and organic sources of Cr(Ⅲ), respectively. The amount of Cr(Ⅲ) oxidation depended on the concentration of easily reducible Mn oxides and the oxidation was more intense at the soil water contents in which Mn(Ⅲ/Ⅳ) oxides were more stable. Soluble organic compounds in soil decreased Cr(Ⅵ) formation due to Cr(Ⅲ) complexation. This mechanism also resulted in the decrease in the oxidation of Cr(Ⅲ) due to the tannery sludge additions. Chromium(Ⅲ) oxidation to Cr(Ⅵ) at the solid/solution interface involved the following mechanisms: the formation of a precursor complex on manganese (Mn) oxide surfaces, followed by electron transfer from Cr(Ⅲ) to Mn(Ⅲ or Ⅳ), the formation of a successor complex with Mn(Ⅱ) and Cr(Ⅵ), and the breakdown of the successor complex and release of Mn(Ⅱ) and Cr(Ⅵ) into the soil solution.展开更多
文摘This study is aimed at identifying and determining the percentage of occurrence frequency of cellulose decomposing soil fungi. The soil samples were inoculated into culture plates prepared in Sabouraud medium under sterilized conditions and incubated at 30 ℃ for 4 to 7 d. The identified fungal species were incubated in self-designed cellulose medium for testing their cellulolytic ability. Forty-two species, including2 nova species, representing sixteen genera showed growth and sporulation in the cellulose medium. Most of the isolated species were from genus Aspergillus and Penicillium. Aspergillus niger and Mucor hiemalis showed highest occurrence frequency (45% and 36% respectively), as these species were collected from about 80% of soil samples. Being agar free and cheaper, the new fungal medium designed showed results equivalent to Sabouraud medium.
基金Supported by the National Natural Science Foundation of China(No.41776153)the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology(No.2016ASKJ02-1)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11020304)the Postdoctoral Application Research Program funded by Qingdao(No.2016189)
文摘Protoplast isolation was relevant for gene manipulation in U lva, and universal protocols have been proposed based on evaluation for various wildly collected species. However, only clonal laboratory cultures were practical for genetic transformation, and whether applicability of such universal protocol existed for these artificial cultures has never been investigated. In this research, samples in different physiological states or developmental stages were tested in U. prolifera. The results proved that the protoplast yields were strongly dependent on the characteristics of samples. Neither F_v/F_m value nor chlorophyll content exhibited an ideal correlation with the protoplast yields. Alternatively, specific growth rate, coupled with developmental stage, could serve as an ef fective combined index to determine the right time for protoplast isolation. According to this instruction, here we reported the highest yields of protoplast((31.5±1.9)×10~6 cells/g f. wt.) in U. prolifera, following comparison between protocols, and further optimizations on enzyme content, incubation period, starting biomass and pretreatment. This specified protocol for artificially cultured clonal samples could meet the need for protoplast-mediated genetic transformation in U. prolifera.
基金financially supported by the National High Technology Research and Development Project of China(863 Project,No.2001AA622060 and No.2003A-A622060)
文摘It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp (Litopenaeus vannamei) intestines by using multiple selective media.The selected isolate STE was identified on the basis of its morphological, physiological,and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas.This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.
文摘AIM: To analyze the upregulated CD133 expression in tumorigenesis of primary colon cancer cells. METHODS: Upregulated CD133 expression in tumorigenesis of colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 and SW620) was analyzed by flow cytometry. Human colon cancer tissue samples were stained with anti-human CD133. SW620 cells were sorted according to the CD133 expression level measured by fluorescence-activated cell sorting. Spheroids of colorectal cancer cells were cultured with the hanging drop. Expression of CD133 and Lgr5 in spheroids of colorectal cancer cells and monolayer culture was detected by RT-qPCR. Spheroids of colorectal cancer cells were analyzed using anti-human CD133 with immunohistochemical staining. RESULTS: CD133 antigen was expressed in colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 and SW620) as well as in primary and metastatic human colon cancer tissues. However, the CD133 was differently expressed in these cell lines and tissues. The expression levels of CD133 and Lgr5 were significantly higher in spheroids of parental, CD133hi and CD133-cells than in their monolayer culture at the mRNA level (P < 0.05). Immunohistochemical staining of spheroids of CD133-cells showed that CD133 was highly expressed in colorectal cancer cell lines. CONCLUSION: Upregulated CD133 expression plays a role in tumorigenesis colorectal cancer cells, which may promote the expression of other critical genes that can drive tumorigenesis.
文摘Mesenchymal stem cell differentiation towards osteogenic, chondrogenic and adipogenic lineages have been extensively described and reproduced in the literature. In contrast, cardiomyogenic differentiation still remains largely controversial. In this study the authors aim to shed new light into this unclear phenomenon and test whether BMMSC (bone marrow mesenchymal stem cells) and ATMSC (adipose tissue derived mesenchymal stem cells) are able to differentiate into functional cardiomyocytes, investigating two differentiation protocols. AT and BMMSC behaved differently when cultured in differentiation media and presented lower levels of proliferation and alkaline phosphatase production, expression of cardiomyocyte-specific transcription factors such as GATA-4, Nkx2-5 and proteins such as ct and 13 Myosin Heavy Chains. Furthermore, MSC started to express higher levels of Connexin-43 and c~ sarcomeric actinin protein. Unfortunately, though, MSC did not present cardiomyocyte-like electrophysiological properties. In order to analyze a possible explanation for such limited plasticity, the authors decided to address the issue using a quantitative approach. Gene expression was quantified by Real time PCR, and, for the first time, the authors show that a possible explanation for limited plasticity of MSC is that even though differentiated cells presented differential gene expression, the levels of key cardiomyogenic genes did not reach expression levels presented by adult cardiomyocytes, nor were maintained along differentiation, reaching peaks at 4 days of stimulation, and decaying thereafter.
基金Supported by the Soil Testing Laboratory Project,Federal University of Rio Grande do Sul,Brazil.
文摘Disposal of chromium (Cr) hexavalent form, Cr(Ⅵ), in soils as additions in organic fertilizers, liming materials or plant nutrient sources can be dangerous since Cr(Ⅵ) can be highly toxic to plants, animals, and humans. In order to explore soil conditions that lead to Cr(Ⅵ) generation, this study were performed using a Paleudult (Dystic Nitosol) from a region that has a high concentration of tannery operations in the Rio Crande do Sul State, southern Brazil. Three laboratory incubation experiments were carried out to examine the influences of soil moisture content and concentration of cobalt and organic matter additions on soil Cr(Ⅵ) formation and release and manganese (Mn) oxide reduction with a salt of chromium chloride (CrCl3) and tannery sludge as inorganic and organic sources of Cr(Ⅲ), respectively. The amount of Cr(Ⅲ) oxidation depended on the concentration of easily reducible Mn oxides and the oxidation was more intense at the soil water contents in which Mn(Ⅲ/Ⅳ) oxides were more stable. Soluble organic compounds in soil decreased Cr(Ⅵ) formation due to Cr(Ⅲ) complexation. This mechanism also resulted in the decrease in the oxidation of Cr(Ⅲ) due to the tannery sludge additions. Chromium(Ⅲ) oxidation to Cr(Ⅵ) at the solid/solution interface involved the following mechanisms: the formation of a precursor complex on manganese (Mn) oxide surfaces, followed by electron transfer from Cr(Ⅲ) to Mn(Ⅲ or Ⅳ), the formation of a successor complex with Mn(Ⅱ) and Cr(Ⅵ), and the breakdown of the successor complex and release of Mn(Ⅱ) and Cr(Ⅵ) into the soil solution.