Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspirat...Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspiration for scientists and engineers. In the past decade, tinder the multi-disciplinary collaboration, bio-inspired special wetting surfaces have attracted much attention for both fundamental research and practical applications. In this review, we focus on recent research progress in bio-inspired special wetting surfaces via self-assembly, such as low adhesive superhydrophobic surfaces, high adhesive superhydrophobic surfaces, superamphiphobic surfaces, and stimuli-responsive surfaces. The challenges and perspectives of this research field in the future are also briefly addressed.展开更多
Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water spl...Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water splitting, and water purification, all call for a molecular-level understanding of water. This invokes relentless efforts to further our understanding of the basic science of water. Current challenges to achieve a molecular picture of the peculiar properties and behavior of water are discussed herein, with a particular focus on the structure and dynamics of bulk and surface water, the molecular mechanisms of water wetting and splitting, application-oriented research on water decontamination and desalination, and the development of complementary techniques for probing water at the nanoscale.展开更多
基金the financial support of the National Natural Science Foundation of China (21001013, 21121001, 91127025)National Basic Research Program of China (2010CB934700)+3 种基金Program for New Century Excellent Talents in UniversityBeijing Natural Science Foundation(2122035)Specialized Research Fund for the Doctoral Program of Higher Educationthe Fundamental Research Funds for the Central Universities
文摘Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspiration for scientists and engineers. In the past decade, tinder the multi-disciplinary collaboration, bio-inspired special wetting surfaces have attracted much attention for both fundamental research and practical applications. In this review, we focus on recent research progress in bio-inspired special wetting surfaces via self-assembly, such as low adhesive superhydrophobic surfaces, high adhesive superhydrophobic surfaces, superamphiphobic surfaces, and stimuli-responsive surfaces. The challenges and perspectives of this research field in the future are also briefly addressed.
基金We thank discussion and help from Chongqin Zhu and Dr. Hui Li, Dr. Z. X. Cao, and Dr. Y. Luo during manuscript preparation. Financial support from NIST, the National Basic Research Program of China (No. 2012CB921403) and the National Natural Science Foundationof China (Nos. 11474328, 11290164, and 11222431) and CAS are gratefully acknowledged.
文摘Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water splitting, and water purification, all call for a molecular-level understanding of water. This invokes relentless efforts to further our understanding of the basic science of water. Current challenges to achieve a molecular picture of the peculiar properties and behavior of water are discussed herein, with a particular focus on the structure and dynamics of bulk and surface water, the molecular mechanisms of water wetting and splitting, application-oriented research on water decontamination and desalination, and the development of complementary techniques for probing water at the nanoscale.