Under the micro-scale condition,feature size of the channel is one of the main factors influencing the fluid flow characteristics. In printing process,ink thickness in the extrusion zone formed by two ink rollers may ...Under the micro-scale condition,feature size of the channel is one of the main factors influencing the fluid flow characteristics. In printing process,ink thickness in the extrusion zone formed by two ink rollers may reach micron scale. Compared with macroscopic fluid,the velocity field and the pressure field of fluid may change when the feature size of fluid channel reaches micron scale. In order to control printing quality,it is necessary to research the influence of feature size on ink flow characteristics in micro scale. This paper analyzes it in theory,and then numerical simulation of an ink flow model with different feature sizes is carried out in no slip condition. The influence of the feature size on the ink flow characteristics and the wall shear force are obtained. Besides,the ink flow model with different feature sizes is simulated numerically in slip condition,and the influence of feature size on ink flow characteristics is obtained. Finally,by comparing and analyzing the above results,it can be concluded that both the ink velocity and pressure at the inlet of the extrusion zone are inversely proportional to the feature sizes whether in slip condition or not. And the ink velocity in slip condition is larger than that without slip,the pressure at the inlet of the extrusion zone is less than that in no slip condition. Within the micro-scale range,the ink velocity difference between the two conditions cannot be ignored. Therefore,it is necessary to consider slip when analyzing the influence of feature size of micro-scale channel on ink flow characteristics.展开更多
Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future ...Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future availability of groundwater to meet domestic, agricultural, industrial, and environmental needs. Deep understanding of spatial and temporal water table dynamics together with transport processes is required. This paper gathers historical geological, hidrological and chemical information for quantitative and qualitative as well as spatial and temporal evolution of groundwater for Aguanaval and Chupaderos aquifers, both surrounding Calera aquifer in Mexico. Historical databases were employed to determine temporal trends of water levels and values were projected for years 2010, 2030 and 2050. Potential recharge sites were also identified through water level-topography correlation. The water quality analysis was completed by obtaining, through geostatistics, spatial distributions for bicarbonate, chloride, sulfate, total dissolved solids, temperature, and sodium, employing databases generated in recent sampling campaigns. This analysis provided additional elements to help understand the functioning of groundwater in studied aquifers. Finally, results were compared with permissible values established in the Mexican norm.展开更多
基金Supported by the National Natural Science Foundation of China(No.51675010)the Science and Technology Plan Project of Beijing Education Commission(No.KM201710005015)
文摘Under the micro-scale condition,feature size of the channel is one of the main factors influencing the fluid flow characteristics. In printing process,ink thickness in the extrusion zone formed by two ink rollers may reach micron scale. Compared with macroscopic fluid,the velocity field and the pressure field of fluid may change when the feature size of fluid channel reaches micron scale. In order to control printing quality,it is necessary to research the influence of feature size on ink flow characteristics in micro scale. This paper analyzes it in theory,and then numerical simulation of an ink flow model with different feature sizes is carried out in no slip condition. The influence of the feature size on the ink flow characteristics and the wall shear force are obtained. Besides,the ink flow model with different feature sizes is simulated numerically in slip condition,and the influence of feature size on ink flow characteristics is obtained. Finally,by comparing and analyzing the above results,it can be concluded that both the ink velocity and pressure at the inlet of the extrusion zone are inversely proportional to the feature sizes whether in slip condition or not. And the ink velocity in slip condition is larger than that without slip,the pressure at the inlet of the extrusion zone is less than that in no slip condition. Within the micro-scale range,the ink velocity difference between the two conditions cannot be ignored. Therefore,it is necessary to consider slip when analyzing the influence of feature size of micro-scale channel on ink flow characteristics.
文摘Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future availability of groundwater to meet domestic, agricultural, industrial, and environmental needs. Deep understanding of spatial and temporal water table dynamics together with transport processes is required. This paper gathers historical geological, hidrological and chemical information for quantitative and qualitative as well as spatial and temporal evolution of groundwater for Aguanaval and Chupaderos aquifers, both surrounding Calera aquifer in Mexico. Historical databases were employed to determine temporal trends of water levels and values were projected for years 2010, 2030 and 2050. Potential recharge sites were also identified through water level-topography correlation. The water quality analysis was completed by obtaining, through geostatistics, spatial distributions for bicarbonate, chloride, sulfate, total dissolved solids, temperature, and sodium, employing databases generated in recent sampling campaigns. This analysis provided additional elements to help understand the functioning of groundwater in studied aquifers. Finally, results were compared with permissible values established in the Mexican norm.