Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through mo...Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.展开更多
The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning s...The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.展开更多
Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves....Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.展开更多
The article is an attempt to compile the results of CFD liquid flow simulation through pipeline section containing hydraulic elbow with the results of ultrasonic flow measurements. To carry out the measurements behind...The article is an attempt to compile the results of CFD liquid flow simulation through pipeline section containing hydraulic elbow with the results of ultrasonic flow measurements. To carry out the measurements behind the flow disturbing element(hydraulic elbow), an ultrasonic flowmeter with applied head set in accordance with the Z-type system was used. For comparative purposes, a flow simulation for 3 different turbulence models(k-epsilon, SST and SSG) was performed. It was found that with a proper ultrasonic flowmeter heads configurations, it is possible to measure the flow rate disturbed by the hydraulic elbow at any distance from the source of the disturbance. It has to use appropriate correction factor that can be determined by knowing the flow velocity profile equation. Based on comparison of CFD simulation results with experimental data, the accuracy/purposefulness of using individual turbulence models in the case of discussed hydraulic installation was evaluated.展开更多
基金Supported by U.S. Office of Naval Research,Ocean Acoustics Program(322OA)under Nos.N00014-11-1-0701 and N00014-13-1-0306
文摘Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.
基金Supported by the National Defense Basic Foundation of China B2420710007
文摘The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.
基金Supported by the National Natural Science Foundation under Grant No.60572098
文摘Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.
文摘The article is an attempt to compile the results of CFD liquid flow simulation through pipeline section containing hydraulic elbow with the results of ultrasonic flow measurements. To carry out the measurements behind the flow disturbing element(hydraulic elbow), an ultrasonic flowmeter with applied head set in accordance with the Z-type system was used. For comparative purposes, a flow simulation for 3 different turbulence models(k-epsilon, SST and SSG) was performed. It was found that with a proper ultrasonic flowmeter heads configurations, it is possible to measure the flow rate disturbed by the hydraulic elbow at any distance from the source of the disturbance. It has to use appropriate correction factor that can be determined by knowing the flow velocity profile equation. Based on comparison of CFD simulation results with experimental data, the accuracy/purposefulness of using individual turbulence models in the case of discussed hydraulic installation was evaluated.