Experimental data are presented for the void fraction and the shear stresses of stratified gas-liquid flow in a pipe. A new technique was used to measure the interface shear stress. The interfacial shear stress was de...Experimental data are presented for the void fraction and the shear stresses of stratified gas-liquid flow in a pipe. A new technique was used to measure the interface shear stress. The interfacial shear stress was determined by using two methods: a momentum balance of gas and an extrapolation of the Reynolds shear stress profile at the gas-liquid interface. A new formula , relating to the interfacial friction factor with the void fraction and superficial gas Reynold number, was developed to predict the interface shear stress . The predicted values are in good agreement with experimental data.展开更多
A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is e...A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the interfacial instability are carded out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially lor low gas velocities.展开更多
In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different para...In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work.展开更多
AIM: To analyze the upregulated CD133 expression in tumorigenesis of primary colon cancer cells. METHODS: Upregulated CD133 expression in tumorigenesis of colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 an...AIM: To analyze the upregulated CD133 expression in tumorigenesis of primary colon cancer cells. METHODS: Upregulated CD133 expression in tumorigenesis of colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 and SW620) was analyzed by flow cytometry. Human colon cancer tissue samples were stained with anti-human CD133. SW620 cells were sorted according to the CD133 expression level measured by fluorescence-activated cell sorting. Spheroids of colorectal cancer cells were cultured with the hanging drop. Expression of CD133 and Lgr5 in spheroids of colorectal cancer cells and monolayer culture was detected by RT-qPCR. Spheroids of colorectal cancer cells were analyzed using anti-human CD133 with immunohistochemical staining. RESULTS: CD133 antigen was expressed in colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 and SW620) as well as in primary and metastatic human colon cancer tissues. However, the CD133 was differently expressed in these cell lines and tissues. The expression levels of CD133 and Lgr5 were significantly higher in spheroids of parental, CD133hi and CD133-cells than in their monolayer culture at the mRNA level (P < 0.05). Immunohistochemical staining of spheroids of CD133-cells showed that CD133 was highly expressed in colorectal cancer cell lines. CONCLUSION: Upregulated CD133 expression plays a role in tumorigenesis colorectal cancer cells, which may promote the expression of other critical genes that can drive tumorigenesis.展开更多
The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate...The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate the characteristics of flame development in a lean-stratified combustion of Natural Gas Engine (CNG) in a single cylinder direct injection (DI) engine at a specific motor speed, and fixed injection timing and air-fuel ratio by varying only the swirl level at the intake. The engine was set to run at 1800 rpm with half-load throttled. The ignition advance was set at 21.5 BTDC, and to create an overall lean and stratified mixture, injection timing was set at 61 BTDC with an air-fuel-ratio of 40.5 (λ=2.35). Variable turbulent flow conditions near spark-plug were created by positioning the swirl control valves (SCV) at the intake port just before the two intake valves. This was done by setting one of the valves at full open position and the other one at 0% closed, 50% closed and 100% closed positions in order to achieve medium tumble (no swirl), medium swirl and high swirl flows in the cylinder, respectively. An endoscope and CCD camera assembly was utilized to capture the flame images from the tumble plane at the intake side of the engine ever), 2 CA degrees after ignition timing (AIT) for 40 CAs. It was observed that flame growth rate and flame convection velocity are increasing with increasing the swirl level. The total combustion duration is, thus, shorter in swirl induced combustion than without. However, COV in IMEP is greater in swirl induced flow cases than the medium tumble.展开更多
The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condit...The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.展开更多
Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been d...Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been developed for single-phase fluids in the subcritical thermodynamic state. In the present computational study, the statistical properties of turbulent flow as well as the development of coherent flow structures in a zero-pressuregradient flat-plate boundary layer are investigated in the absence of body forces, where the working fluid is in the supercritical thermodynamic state. The simulated boundary layers are developed to a friction Reynolds number of 250 for two heat-flux to mass-flux ratios corresponding to cases where normal heat transfer and improved heat transfer are observed. In the case where improved heat transfer is observed, spanwise spacing of the near-wall coherent flow structures is reduced due to a relatively less stable flow environment resulting from the lower magnitudes of the wall-normal viscosity-gradient profile.展开更多
基金Supported by the National Natural Science Foundation of China(No.59236130).
文摘Experimental data are presented for the void fraction and the shear stresses of stratified gas-liquid flow in a pipe. A new technique was used to measure the interface shear stress. The interfacial shear stress was determined by using two methods: a momentum balance of gas and an extrapolation of the Reynolds shear stress profile at the gas-liquid interface. A new formula , relating to the interfacial friction factor with the void fraction and superficial gas Reynold number, was developed to predict the interface shear stress . The predicted values are in good agreement with experimental data.
基金Supported by the National Natural Science Foundation of China (No.50521604) and Shanghai Jiao Tong University Young Teacher Foundation.
文摘A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the interfacial instability are carded out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially lor low gas velocities.
基金supported by the National Natural Science Foundation of China (Grant number 51776015)
文摘In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work.
文摘AIM: To analyze the upregulated CD133 expression in tumorigenesis of primary colon cancer cells. METHODS: Upregulated CD133 expression in tumorigenesis of colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 and SW620) was analyzed by flow cytometry. Human colon cancer tissue samples were stained with anti-human CD133. SW620 cells were sorted according to the CD133 expression level measured by fluorescence-activated cell sorting. Spheroids of colorectal cancer cells were cultured with the hanging drop. Expression of CD133 and Lgr5 in spheroids of colorectal cancer cells and monolayer culture was detected by RT-qPCR. Spheroids of colorectal cancer cells were analyzed using anti-human CD133 with immunohistochemical staining. RESULTS: CD133 antigen was expressed in colorectal cancer cell lines (Lovo, Colo205, Caco-2, HCT116 and SW620) as well as in primary and metastatic human colon cancer tissues. However, the CD133 was differently expressed in these cell lines and tissues. The expression levels of CD133 and Lgr5 were significantly higher in spheroids of parental, CD133hi and CD133-cells than in their monolayer culture at the mRNA level (P < 0.05). Immunohistochemical staining of spheroids of CD133-cells showed that CD133 was highly expressed in colorectal cancer cell lines. CONCLUSION: Upregulated CD133 expression plays a role in tumorigenesis colorectal cancer cells, which may promote the expression of other critical genes that can drive tumorigenesis.
文摘The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate the characteristics of flame development in a lean-stratified combustion of Natural Gas Engine (CNG) in a single cylinder direct injection (DI) engine at a specific motor speed, and fixed injection timing and air-fuel ratio by varying only the swirl level at the intake. The engine was set to run at 1800 rpm with half-load throttled. The ignition advance was set at 21.5 BTDC, and to create an overall lean and stratified mixture, injection timing was set at 61 BTDC with an air-fuel-ratio of 40.5 (λ=2.35). Variable turbulent flow conditions near spark-plug were created by positioning the swirl control valves (SCV) at the intake port just before the two intake valves. This was done by setting one of the valves at full open position and the other one at 0% closed, 50% closed and 100% closed positions in order to achieve medium tumble (no swirl), medium swirl and high swirl flows in the cylinder, respectively. An endoscope and CCD camera assembly was utilized to capture the flame images from the tumble plane at the intake side of the engine ever), 2 CA degrees after ignition timing (AIT) for 40 CAs. It was observed that flame growth rate and flame convection velocity are increasing with increasing the swirl level. The total combustion duration is, thus, shorter in swirl induced combustion than without. However, COV in IMEP is greater in swirl induced flow cases than the medium tumble.
文摘The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.
基金Funding by the Government of Ontario and Atomic Energy of Canada Limited (AECL)
文摘Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been developed for single-phase fluids in the subcritical thermodynamic state. In the present computational study, the statistical properties of turbulent flow as well as the development of coherent flow structures in a zero-pressuregradient flat-plate boundary layer are investigated in the absence of body forces, where the working fluid is in the supercritical thermodynamic state. The simulated boundary layers are developed to a friction Reynolds number of 250 for two heat-flux to mass-flux ratios corresponding to cases where normal heat transfer and improved heat transfer are observed. In the case where improved heat transfer is observed, spanwise spacing of the near-wall coherent flow structures is reduced due to a relatively less stable flow environment resulting from the lower magnitudes of the wall-normal viscosity-gradient profile.