The flat dilatometer test (DMT) has the potential to be a useful tool in the evaluation of liquefaction potential of soils. In practice, it is necessary to carefully examine existing DMT-based methods for evaluating...The flat dilatometer test (DMT) has the potential to be a useful tool in the evaluation of liquefaction potential of soils. In practice, it is necessary to carefully examine existing DMT-based methods for evaluating liquefaction potential. We con- ducted the DMT and cone penetration test (CPT) in high liquefaction potential areas to examine the existing DMT-based methods for liquefaction potential evaluation. Specifically, the DMT and CPT were conducted side-by-side at each of six in-situ sites, and thus it is feasible to utilize those test results to validate the existing DMT-based methods. The DMT parameter, horizontal stress index (KD), is used as an indicator for estimating liquefaction resistance of soils in terms of cyclic resistance ratio (CRR). The analysis results revealed that the existing KD-based liquefaction evaluation methods would overestimate the CRR of soils, which leads to overestimation of the factor of safety against liquefaction. Also, the estimations of DMT-KI~ values by using the CPT-qc as well as the correlation between DMT-KD and CPT-qc proposed by the previous studies would be significantly smaller than field measurements. The results reflected that further validation of the existing DMT-based methods for liquefaction evaluation is desirable.展开更多
基金Project (No. NSC 98-2221-E-006-198) supported by the National Science Council
文摘The flat dilatometer test (DMT) has the potential to be a useful tool in the evaluation of liquefaction potential of soils. In practice, it is necessary to carefully examine existing DMT-based methods for evaluating liquefaction potential. We con- ducted the DMT and cone penetration test (CPT) in high liquefaction potential areas to examine the existing DMT-based methods for liquefaction potential evaluation. Specifically, the DMT and CPT were conducted side-by-side at each of six in-situ sites, and thus it is feasible to utilize those test results to validate the existing DMT-based methods. The DMT parameter, horizontal stress index (KD), is used as an indicator for estimating liquefaction resistance of soils in terms of cyclic resistance ratio (CRR). The analysis results revealed that the existing KD-based liquefaction evaluation methods would overestimate the CRR of soils, which leads to overestimation of the factor of safety against liquefaction. Also, the estimations of DMT-KI~ values by using the CPT-qc as well as the correlation between DMT-KD and CPT-qc proposed by the previous studies would be significantly smaller than field measurements. The results reflected that further validation of the existing DMT-based methods for liquefaction evaluation is desirable.