This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind tur...This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.展开更多
In the present research work, the pitch-control is carried out such that the rotor blades are rotated around their longitudinal axis while the rotor continues its normal rotation. It is really a challenge to produce a...In the present research work, the pitch-control is carried out such that the rotor blades are rotated around their longitudinal axis while the rotor continues its normal rotation. It is really a challenge to produce a clever design to pitch the rotor blades by the optimal amount so as to maximize the power output at all wind speeds. The mechanism is implemented to a three-blade, horizontal-axis, home-scale wind turbine. The mechanism is powered by a suitable DC (direct-current) motor. The tests were carried out in the open section of a delivery wind tunnel. The air speed was measured by a suitable anemometer. The corresponding rotational speed (rpm) and output voltage at different wind speeds were measured and recorded for calibration of the control system. The mechanism proved to be successful in controlling the pitch angle over a wide range of wind speeds.展开更多
In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dyn...In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dynamic) and experimental data. Particularly, the influence of the building on the micro wind turbine performance has been studied and the numerical results (wind velocity fields and turbulence intensity above the building) have been compared with the experimental data collected over a period of three years. The results have shown that horizontal-axis wind turbines suffer from wake effect due to buildings, therefore, best sites in urban area have to be identified by a careful fluid dynamic analysis aimed at evaluating all causes that can reduce significantly the performance of the generator: in fact, building should allow to exploit increased wind intensity, but often this advantage is voided by turbulence phenomena, as in the case under investigation where the measured aerogenerator efficiency is lower than the nominal performance curve. Then, the best site can be found by crossing the contours of wind velocity with the turbulence intensity fields: in this way it is possible to localize an area (best location) where the aerogenerator can give maximum performance.展开更多
This paper has attempted to study a mechanism of three-dimensional flow around a horizontal axis wind turbine(HAWT) rotor blade. An experimental study of the flow phenomenon in the vicinity of the wind turbine blade i...This paper has attempted to study a mechanism of three-dimensional flow around a horizontal axis wind turbine(HAWT) rotor blade. An experimental study of the flow phenomenon in the vicinity of the wind turbine blade is a challenging endeavor. In this research, the HAWT model with 2.4 m diameter was tested in the large wind tunnel. The flow around the rotating blade surface was measured simultaneously for three velocity components, and two probes were used for the synchronized measurement of three-dimensional flow components. The local velocity was detected for the single seeding particle measured in the point where three pairs of laser beams intersected. Blade sections of interest in this study are composed of radial positions r/R = 0.3, 0.5 and 0.7. Optimum and low tip speed ratio flow characteristics were also compared. The velocity flow vector, skin friction coefficient and bound circulation were calculated from LDV measurements, and the experimental research showed reasonably and clearly the experimental results.展开更多
文摘This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.
文摘In the present research work, the pitch-control is carried out such that the rotor blades are rotated around their longitudinal axis while the rotor continues its normal rotation. It is really a challenge to produce a clever design to pitch the rotor blades by the optimal amount so as to maximize the power output at all wind speeds. The mechanism is implemented to a three-blade, horizontal-axis, home-scale wind turbine. The mechanism is powered by a suitable DC (direct-current) motor. The tests were carried out in the open section of a delivery wind tunnel. The air speed was measured by a suitable anemometer. The corresponding rotational speed (rpm) and output voltage at different wind speeds were measured and recorded for calibration of the control system. The mechanism proved to be successful in controlling the pitch angle over a wide range of wind speeds.
文摘In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dynamic) and experimental data. Particularly, the influence of the building on the micro wind turbine performance has been studied and the numerical results (wind velocity fields and turbulence intensity above the building) have been compared with the experimental data collected over a period of three years. The results have shown that horizontal-axis wind turbines suffer from wake effect due to buildings, therefore, best sites in urban area have to be identified by a careful fluid dynamic analysis aimed at evaluating all causes that can reduce significantly the performance of the generator: in fact, building should allow to exploit increased wind intensity, but often this advantage is voided by turbulence phenomena, as in the case under investigation where the measured aerogenerator efficiency is lower than the nominal performance curve. Then, the best site can be found by crossing the contours of wind velocity with the turbulence intensity fields: in this way it is possible to localize an area (best location) where the aerogenerator can give maximum performance.
文摘This paper has attempted to study a mechanism of three-dimensional flow around a horizontal axis wind turbine(HAWT) rotor blade. An experimental study of the flow phenomenon in the vicinity of the wind turbine blade is a challenging endeavor. In this research, the HAWT model with 2.4 m diameter was tested in the large wind tunnel. The flow around the rotating blade surface was measured simultaneously for three velocity components, and two probes were used for the synchronized measurement of three-dimensional flow components. The local velocity was detected for the single seeding particle measured in the point where three pairs of laser beams intersected. Blade sections of interest in this study are composed of radial positions r/R = 0.3, 0.5 and 0.7. Optimum and low tip speed ratio flow characteristics were also compared. The velocity flow vector, skin friction coefficient and bound circulation were calculated from LDV measurements, and the experimental research showed reasonably and clearly the experimental results.