期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
浅海桶形基础平台抗拔力与抗倾稳定分析 被引量:3
1
作者 薛万东 《黄渤海海洋》 CSCD 北大核心 2001年第3期87-92,共6页
平台在海上受风、浪、流、冰等水平载荷作用产生倾斜 ,而土壤粘接力、摩擦力和土抗力是平台的抗拔和抗倾力 ,桶基平台应满足抗拔、抗倾稳定的要求 ,以保证平台的整体稳定性。讨论了桶基平台受水平力作用时 ,桶形基础的破坏模式及其计算... 平台在海上受风、浪、流、冰等水平载荷作用产生倾斜 ,而土壤粘接力、摩擦力和土抗力是平台的抗拔和抗倾力 ,桶基平台应满足抗拔、抗倾稳定的要求 ,以保证平台的整体稳定性。讨论了桶基平台受水平力作用时 ,桶形基础的破坏模式及其计算方法 。 展开更多
关键词 桶形基础 抗拔力 抗倾稳定 失效模式 风场 海流 海水 水平载荷作用 海洋工程 海上油气田
下载PDF
Closed-form solution for shear lag effects of steel-concrete composite box beams considering shear deformation and slip 被引量:10
2
作者 周旺保 蒋丽忠 +1 位作者 刘志杰 刘小洁 《Journal of Central South University》 SCIE EI CAS 2012年第10期2976-2982,共7页
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs... Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant. 展开更多
关键词 steel-concrete composite box beam shear lag effect shear deformation SLIP closed-form solution
下载PDF
The Effects of Cross Sectional Dimensions on the Behavior of L-Shaped RC Structural Members
3
作者 Mehmet Hasnalbant Cemal Eyyubov 《Journal of Civil Engineering and Architecture》 2016年第12期1355-1363,共9页
The behavior of L-Shaped RC (reinforced concrete) shear walls was investigated in the Erciyes University Earthquake Investigation Laboratory under the influence of constant axial load together with reversed cyclic l... The behavior of L-Shaped RC (reinforced concrete) shear walls was investigated in the Erciyes University Earthquake Investigation Laboratory under the influence of constant axial load together with reversed cyclic lateral load. The objective of this study was to evaluate the effects of cross sectional dimensions on the behavior of L-shaped structural members and to assess their earthquake performance. In order to investigate L-shaped RC structural members, the special experiment setup and four type of 1/2 scaled specimens which have different aspect ratio were constructed. The specimens were loaded in line with the major principal axes direction laterally. Axial load ratio was 0.1 and cross section height to thickness ratios were' 3:1, 5:1, 8:1, 10:1. Cross section thickness was 120 mm which corresponds to (360:120), (600:120), (960:120), (1,200:120) wall legs cross sectional dimensions in mm. The specimens height was 1,500 mm, together with upper and lower slabs overall height was 2,000 mm. Concrete compression strength was 30 N/mm2, steel yield stress 420 N/mm2 and vertical reinforcement ratio was 1% for all specimens. According to the test results, the specimen of which the aspect ratio is 3 (360:120) has shown column behavior, the specimen of which the aspect ratio is 5 (600:120) has shown slender wall behavior and last two specimens of which the aspect ratios are 8 (960:120) and 10 (1,200:120) have shown squat wall behavior. When considering the cracking patterns and hysteretic behavior, since the aspect ratio 8, the specimens show flexure-shear interaction behavior and prone to brittle failure. 展开更多
关键词 Shear wall reinforced concrete L-shaped DUCTILITY stiffness.
下载PDF
Structural Response of Unreinforced Masonry Walls
4
作者 Nelson Dario Aguera Miguel Eduardo Tomello Carlos Daniel Frau 《Journal of Civil Engineering and Architecture》 2016年第2期219-231,共13页
Historical buildings located in seismic regions have URM (unreinforced masonry) walls of considerable width as their main structure. In order to study the structural response of such type of masonry, it is necessary... Historical buildings located in seismic regions have URM (unreinforced masonry) walls of considerable width as their main structure. In order to study the structural response of such type of masonry, it is necessary to know its mechanical and elastic characteristics. For such purpose, it is generally necessary to perform destructive and non-destructive tests. Other procedures, such as the study of masonry through numerical models, would make it possible to predict, with close approximation, the response of masonry to different actions. The purpose of this paper is to evaluate the behavior of URM walls subjected to axial and horizontal load by using a finite element model with the Abaqus code. Constitutive laws of materials, bricks and mortar are defined, using two constitutive models of plasticity and damage included in the materials library. The constitutive models used employ information of experimental tests performed on bricks and mortar. The results of an analysis for an URM wall subjected to axial and horizontal load are presented. Responses of walls were obtained in terms of load versus displacement for different constitutive models and for different qualities of bricks and mortar. The two constitutive models used show similar results, particularly in the response waveforms. However, the ultimate capacity values show mean variations of around 30%. The two constitutive models display high dependence upon the mechanical characteristics of bricks and mortar. 展开更多
关键词 MASONRY structural behavior piles.
下载PDF
Permissible Stress Level of Brick Masonry under Compressive Cyclic Loading
5
作者 Milad Mahmoud Alshebani 《Journal of Civil Engineering and Architecture》 2013年第2期153-157,共5页
Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curv... Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curve and stability point curve. The envelope curve is obtained by superimposing the cyclic peaks on the monotonic stress-strain curve. The common point curve is the locus of intersection points of loading and unloading curves of the cycles. If for the same cycle, the loading and unloading are repeated several times, the intersection points of loading and unloading paths will stabilize at a lower bound. The locus of these stabilized points (lower bound points) of all cycles form the stability point curve. Therefore, the stability point curve can be used as a measure for the allowable stress for masonry under cyclic loadings. The proposed cyclic allowable stress level is associated with the accumulation of residual (plastic) strain levels as a result of cyclic loading history. The permissible stress level was found to be about two thirds of the cyclic peak stress of the specimen. 展开更多
关键词 Cyclic loadings permissible stress residual strain stability point.
下载PDF
Optimization design of prestressed concrete wind-turbine tower 被引量:7
6
作者 MA HongWang MENG Ran 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第2期414-422,共9页
Wind energy is a clean and renewable energy for which technology has developed rapidly in recent years.Wind turbines are commonly supported on tubular steel towers.As the turbine size is growing and the towers are ris... Wind energy is a clean and renewable energy for which technology has developed rapidly in recent years.Wind turbines are commonly supported on tubular steel towers.As the turbine size is growing and the towers are rising in height,steel towers are required to be sufficiently strong and stiff,consequently leading to high construction costs.To tackle this problem,a new type of prestressed concrete tower was designed employing a novel tower concept having a regular octagon cross section with interior ribs on each side,which was optimized by comparing the natural frequency and stress difference under the same lateral load in different directions of the tower.The designed tower features a tapered profile that reduces the area subjected to wind;the tapered profile reduces the total weight,applied moment and the capital cost.An optimization method was developed employing ABAQUS software and a genetic algorithm.A target function was defined on the basis of the minimum cost of the concrete and prestressed tendon used,and constraints were applied by accounting for the stress,displacements and natural frequency of the tower.Employing the method,a 100 m prestressed concrete tower system for a 5 MW turbine was optimized and designed under wind and earthquake loads.The paper also reports a systematic design procedure incorporating the finite element method and the optimization method for the prestressed concrete wind-turbine towers. 展开更多
关键词 prestressed concrete wind-turbine tower OPTIMIZATION finite element method genetic algorithm
原文传递
Topology optimization of supporting structure for seismic response reduction of an arch 被引量:1
7
作者 MIYAZU Yuji OHSAKI Makoto TSUDA Seita 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第6期852-861,共10页
A flexible supporting structure that reduces seismic response of an arch is proposed. Topology and cross-sectional areas of the supporting structure modeled as a truss structure are optimized through two steps of stat... A flexible supporting structure that reduces seismic response of an arch is proposed. Topology and cross-sectional areas of the supporting structure modeled as a truss structure are optimized through two steps of static and dynamic optimization problems. In the first step, a flexible supporting structure that has diagonal displacement at the top under horizontal load is obtained by solving static optimization problems. Then, in the second step, the cross-sectional area of the flexible member is optimized to minimize the seismic response acceleration of the arch evaluated by the complete quadratic combination(CQC) method. Time-history seismic response analysis is carried out to show that the response in the normal direction of the roof successfully decreases due to flexibility of the supporting structure; in addition, installing passive energy dissipation devices into the flexible supporting structure is very effective in reducing the tangential response of the arch. 展开更多
关键词 topology optimization ARCH supporting structure TRUSS nonlinear programming problem CQC method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部