When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is use...When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.展开更多
The Weather Research and Forecasting (WRF) model was used to investigate the role of downward momentum transport in the formation of severe surface winds for a squall line on 3-4 June 2009 across regions of the Henan ...The Weather Research and Forecasting (WRF) model was used to investigate the role of downward momentum transport in the formation of severe surface winds for a squall line on 3-4 June 2009 across regions of the Henan and Shandong Provinces of China. The results show that there was a strong westerly jet belt with a wind speed greater than 30 m s 1 and a thickness of 5 km at an altitude of 11-16 km. The jet belt was accelerated, and it descended while the squall line convective system occurred. It was found that the appearance of strong negative perturbation pressure accompanied by the squall line caused the acceleration of the upper-level westerly jet and increased the horizontal wind speed by a maximum of 18%. Meanwhile, the negative buoyancy due to the loading, melting, and evaporation of cloud hydrometeors induced the downward momentum transport from the upper levels. The downward momentum transport contributed approximately 70% and the surface cold pool 30% to the formation of severe surface winds.展开更多
On the basis of elastic rebound theory,using the horizontal velocity field of the Chinese mainland calculated from GPS data during three observation periods from 1999 to 2007,the velocity components that are parallel ...On the basis of elastic rebound theory,using the horizontal velocity field of the Chinese mainland calculated from GPS data during three observation periods from 1999 to 2007,the velocity components that are parallel and plumb to the fault zone are calculated respectively for different periods,and then relative ground movements of two sides of the fault zone are analyzed with power function fitting and graphics. The results show that the relative ground movement shows right-lateral shear deformation before the Wenchuan MS8. 0 earthquake,and at the same time the movement was hindered by the Longmenshan fault zone. Thus,this result has positive significance for distinguishing the elastic strain energy accumulation and deformation anomaly in an earthquake preparation process,and for conducting further research on earthquake prediction.展开更多
Rupture directivity effect causes spatial variation in strong ground motion parameters. It causes difference between the strike- normal (V.) and strike-parallel (Vp) components of horizontal ground motion amplitud...Rupture directivity effect causes spatial variation in strong ground motion parameters. It causes difference between the strike- normal (V.) and strike-parallel (Vp) components of horizontal ground motion amplitudes. These variations become significant for strong ground motion velocity and the authors have developed a modification to define directivity effect factor to account for the effect of rupture directivity in empirical velocity attenuation relations which are based on modeling Silakhor earthquake, using finite element method by ANSYS. The ground motion parameters that are modified include ratio of Vn/Vp component of horizontal velocity and Vn component to average horizontal velocity (V). The ratio of Vn to Vp is large in both the forward directivity direction, where velocity is larger, and in the backward directivity direction, where velocity is smaller. Therefore the authors expected that the Vn/Vp was mainly controlled by directivity angle. Also the variation of fault normal velocity to average horizontal velocity ratio by directivity angle (0) is defined from earthquake modeling. It shows Vn/V is controlled by directivity angle, distance between the site, epicenter and rupture length. This ratio has the same trend in Silakhor earthquake strong ground velocity data. In this paper the equation for Vn/Vp variations by directivity angle is recommended. The authors used Somervill et al. (1997) directivity model parameters as (R/L) cos2 ~ to define directivity effect on Vn/V ratio and therefore directivity factor is determined to account in near field empirical strong ground velocity attenuation relationships.展开更多
基金Project(51274188)supported by the National Natural Science Foundation of China
文摘When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.
基金supported by the National Meteorology Public Welfare Industry Research Project(GYHY200806001)the National Science and Technology Support Program (2006BAC12B03)
文摘The Weather Research and Forecasting (WRF) model was used to investigate the role of downward momentum transport in the formation of severe surface winds for a squall line on 3-4 June 2009 across regions of the Henan and Shandong Provinces of China. The results show that there was a strong westerly jet belt with a wind speed greater than 30 m s 1 and a thickness of 5 km at an altitude of 11-16 km. The jet belt was accelerated, and it descended while the squall line convective system occurred. It was found that the appearance of strong negative perturbation pressure accompanied by the squall line caused the acceleration of the upper-level westerly jet and increased the horizontal wind speed by a maximum of 18%. Meanwhile, the negative buoyancy due to the loading, melting, and evaporation of cloud hydrometeors induced the downward momentum transport from the upper levels. The downward momentum transport contributed approximately 70% and the surface cold pool 30% to the formation of severe surface winds.
基金funded by the Special Subject of the National Key Technology R&D Program for the 11th "Five-year Plan" of China(2006BAC01B02-02-02)
文摘On the basis of elastic rebound theory,using the horizontal velocity field of the Chinese mainland calculated from GPS data during three observation periods from 1999 to 2007,the velocity components that are parallel and plumb to the fault zone are calculated respectively for different periods,and then relative ground movements of two sides of the fault zone are analyzed with power function fitting and graphics. The results show that the relative ground movement shows right-lateral shear deformation before the Wenchuan MS8. 0 earthquake,and at the same time the movement was hindered by the Longmenshan fault zone. Thus,this result has positive significance for distinguishing the elastic strain energy accumulation and deformation anomaly in an earthquake preparation process,and for conducting further research on earthquake prediction.
文摘Rupture directivity effect causes spatial variation in strong ground motion parameters. It causes difference between the strike- normal (V.) and strike-parallel (Vp) components of horizontal ground motion amplitudes. These variations become significant for strong ground motion velocity and the authors have developed a modification to define directivity effect factor to account for the effect of rupture directivity in empirical velocity attenuation relations which are based on modeling Silakhor earthquake, using finite element method by ANSYS. The ground motion parameters that are modified include ratio of Vn/Vp component of horizontal velocity and Vn component to average horizontal velocity (V). The ratio of Vn to Vp is large in both the forward directivity direction, where velocity is larger, and in the backward directivity direction, where velocity is smaller. Therefore the authors expected that the Vn/Vp was mainly controlled by directivity angle. Also the variation of fault normal velocity to average horizontal velocity ratio by directivity angle (0) is defined from earthquake modeling. It shows Vn/V is controlled by directivity angle, distance between the site, epicenter and rupture length. This ratio has the same trend in Silakhor earthquake strong ground velocity data. In this paper the equation for Vn/Vp variations by directivity angle is recommended. The authors used Somervill et al. (1997) directivity model parameters as (R/L) cos2 ~ to define directivity effect on Vn/V ratio and therefore directivity factor is determined to account in near field empirical strong ground velocity attenuation relationships.