期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向公平性联邦学习的指纹识别算法
1
作者 王晨卓 鲁艳蓉 沈剑 《计算机科学》 CSCD 北大核心 2024年第S01期1002-1010,共9页
现有的指纹识别方法大多是基于机器学习,在对海量数据集中训练时忽视了数据本身的隐私性和异质性,从而导致用户信息泄漏和识别率降低。为在隐私保护下协同优化模型精度,提出了一个全新的基于联邦学习的指纹识别算法(Federated Learning-... 现有的指纹识别方法大多是基于机器学习,在对海量数据集中训练时忽视了数据本身的隐私性和异质性,从而导致用户信息泄漏和识别率降低。为在隐私保护下协同优化模型精度,提出了一个全新的基于联邦学习的指纹识别算法(Federated Learning-Fingerprint Recognition,Fed-FR)。首先,通过联邦学习迭代聚合来自各终端的参数,从而提高全局模型的性能;其次,将稀疏表示理论用于低质量指纹图像去噪处理,来增强指纹的纹理结构;再次,针对客户端异构而导致的分配不公问题,提出基于水库抽样的客户端调度策略;最后,在3个真实数据集上进行仿真实验,对Fed-FR的有效性进行对比分析。实验结果表明,Fed-FR精度比局部学习提高5.32%,比联邦平均算法提高8.56%,接近于集中学习的精度;在隐私保护水平、评估准确率及可扩展性等方面具有良好的表现。研究成果首次展现了联邦学习与指纹识别结合的可行性,增强了指纹识别算法的安全性和可扩展性,给联邦学习应用于生物识别技术提供了参考。 展开更多
关键词 指纹识别 联邦学习 稀疏表示 水库抽样 隐私保护
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部