Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrang...Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrangian particles to combine advantages and to compensate disadvantages in both grid based method and particle based method. In this study, the developed numerical model was applied to hydroelastic problems due to impact pressure such as water entry of an elastic cylinder and elastic tanker motion in wave. The authors showed the numerical results which is overall agreement with experimental results. The proposed numerical scheme can be useful and effectiveness to evaluate hydroelasticity and ship-wave interaction in nonlinear wave motion with breaking.展开更多
Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyz...Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.展开更多
文摘Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrangian particles to combine advantages and to compensate disadvantages in both grid based method and particle based method. In this study, the developed numerical model was applied to hydroelastic problems due to impact pressure such as water entry of an elastic cylinder and elastic tanker motion in wave. The authors showed the numerical results which is overall agreement with experimental results. The proposed numerical scheme can be useful and effectiveness to evaluate hydroelasticity and ship-wave interaction in nonlinear wave motion with breaking.
基金the support of Grants-in-Aid for Scientific Research (B), MEXT (No.24360358)
文摘Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.