A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics o...A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.展开更多
In the oil industry, techniques decreasing unwanted water production have drawn large amounts of interest from many companies. During water injection operations, water is injected into the oil reservoir to extract oil...In the oil industry, techniques decreasing unwanted water production have drawn large amounts of interest from many companies. During water injection operations, water is injected into the oil reservoir to extract oil trapped in the formation. Due to the heterogeneity in the reservoir formation, oil production will decline and water production will increase as the injected water sweeps the high permeability zones. In order to flush out the oil remaining in the low permeability zones, many treatments have been used. One such treatment involves the injection of an SAP (superabsorbent polymer) into the high permeability zones. The swelled polymer will decrease the heterogeneity of reservoir permeability, thus forcing water injection into the oil rich, unswept zones/areas of the formation. Proper application of an SAP can have a dramatic impact on both the production and lifespan of mature oil wells. Successful treatment is reliant upon the reservoir salinity, temperature, and pH.展开更多
Most previous researches have focused on biochar application in agricultural soils; however, limited information is available concerning the effects of biochar amendment on greenhouse substrate properties. A greenhous...Most previous researches have focused on biochar application in agricultural soils; however, limited information is available concerning the effects of biochar amendment on greenhouse substrate properties. A greenhouse experiment was conducted to investigate effects of wheat straw biochar (0-160 mL L-1) and super absorbent polymer (SAP, 0.8 g L-1) on physical and chemical properties of a substrate based on spent pig litter compost and the growth of water spinach (Ipomoea aquatica Forsk). Total porosity, water-holding capacity~ pH and electrical conductivity (EC) of the substrate significantly increased with increasing biochar rates, especially in the substrate without SAP. The values of pH and EC were significantly lower in the substrate with SAP than those without SAP at the high biochar application rates (100-160 mL L-l). The germination rates of water spinach decreased with increasing biochar rates when biochar was added alone (76.9%-83.7%), whereas the rates increased to 83.6%-85.8% when biochar was added in combination with SAP. Growth parameters of water spinach and nutrient uptake by shoots and roots increased with increasing biochar rates and reached the maximum values at the biochar rate of 100 mL L-1. There were significant cubic relationships between the uptake of nutrients (N, P, and K) and biochar rates, both with and without SAP addition. In order to avoid negative effects on plant growth, the biochar application rate should be controlled at an optimal level (100 mL L-1 ). The SAP addition not only enhanced the positive effects of biochar application on the properties of the substrate, but also inhibited the excessive rise of pH and EC following biochar additions, which led to better plant growth and enhanced nutrient uptakes by water spinach.展开更多
Constructing high strength pH sensitive supramolecular polymer hydrogel remains very challenging due to the unavoidable network swelling caused by ionization of acid or basic groups at a specified pH.In this work,we p...Constructing high strength pH sensitive supramolecular polymer hydrogel remains very challenging due to the unavoidable network swelling caused by ionization of acid or basic groups at a specified pH.In this work,we proposed a simple and very convenient approach to fabricate high strength pH responsive supramolecular polymer(SP) hydrogels by one-pot copolymerization of N-acryloyl glycinamide(NAGA) and 2-vinyl-4,6-diamino-1,3,5-triazine(VDT),two feature hydrogen bonding monomers.In these PNAGA-PVDT SP hydrogels obtained,the hydrogen bonding of NAGA was shown to play a dominant role in reinforcing strength,while the hydrogen bonding of diaminotriazine served as a pH sensitive moiety.At pH 3,the mechanical properties of PNAGA-PVDT hydrogels decreased to a different extent due to the breakup of hydrogen bonding;in contrast,the hydrogel resumed the original strength while pH was raised to 7.4 because of reconstruction of hydrogen bonding.Over the selected pH range,the PNAGA-PVDT hydrogels exhibited up to 1.25 MPa tensile strength,845% breaking strain,69 kPa Young's modulus and 21 MPa compressive strength.This novel high strength pH-responsive SP hydrogels may find applications in biomedical and industrial fields.展开更多
Three alcohol/water-soluble porphyrins, Zn-TPyPMeI: zinc(II) meso-tetra(N-methyl-4-pyridyl) porphyrin tetra-iodide, Zn- TPyPAdBr: zinc(II) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-b...Three alcohol/water-soluble porphyrins, Zn-TPyPMeI: zinc(II) meso-tetra(N-methyl-4-pyridyl) porphyrin tetra-iodide, Zn- TPyPAdBr: zinc(II) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide and MnC1-TPyPAdBr: man- ganese(III) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide were employed as cathode interlayers to fabricate polymer solar cells (PSCs). The PCvaBM ([6,6]-phenyl C71 butyric acid methyl ester) and PCDTBT (poly[N-9"- hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',3'-benzothiadiazole)])-blend films were used as active layers in polymer solar cells (PSCs). The PSCs with alcohol/water-soluble porphyrins interlayer showed obviously higher power con- version efficiency (PCE) than those without interlayers. The highest PCE, 6.86%, was achieved for the device with MnCl- TPyPAdBr as an interlayer. Ultraviolet photoemission spectroscopic (UPS), carrier mobility, atomic force microscopy (AFM) and contact angle (0) characterizations demonstrated that the porphyrin molecules can result in the formation of interfacial dipole layer between active layer and cathode. The interfacial dipole layer can obviously improve the open-circuit voltage (Voc) and charge extraction, and sequentially lead to the increase of PCE.展开更多
文摘A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.
文摘In the oil industry, techniques decreasing unwanted water production have drawn large amounts of interest from many companies. During water injection operations, water is injected into the oil reservoir to extract oil trapped in the formation. Due to the heterogeneity in the reservoir formation, oil production will decline and water production will increase as the injected water sweeps the high permeability zones. In order to flush out the oil remaining in the low permeability zones, many treatments have been used. One such treatment involves the injection of an SAP (superabsorbent polymer) into the high permeability zones. The swelled polymer will decrease the heterogeneity of reservoir permeability, thus forcing water injection into the oil rich, unswept zones/areas of the formation. Proper application of an SAP can have a dramatic impact on both the production and lifespan of mature oil wells. Successful treatment is reliant upon the reservoir salinity, temperature, and pH.
基金supported by the National Natural Science Foundation of China (No.41401259)the General Financial Grant from the China Postdoctoral Science Foundation (No.2014M551528)+1 种基金the Independent Innovation Project of Jiangsu Province,China (No.CX(14)2035)the Special Scientific Research Fund of Agricultural Public Welfare Profession of China (No.201203050)
文摘Most previous researches have focused on biochar application in agricultural soils; however, limited information is available concerning the effects of biochar amendment on greenhouse substrate properties. A greenhouse experiment was conducted to investigate effects of wheat straw biochar (0-160 mL L-1) and super absorbent polymer (SAP, 0.8 g L-1) on physical and chemical properties of a substrate based on spent pig litter compost and the growth of water spinach (Ipomoea aquatica Forsk). Total porosity, water-holding capacity~ pH and electrical conductivity (EC) of the substrate significantly increased with increasing biochar rates, especially in the substrate without SAP. The values of pH and EC were significantly lower in the substrate with SAP than those without SAP at the high biochar application rates (100-160 mL L-l). The germination rates of water spinach decreased with increasing biochar rates when biochar was added alone (76.9%-83.7%), whereas the rates increased to 83.6%-85.8% when biochar was added in combination with SAP. Growth parameters of water spinach and nutrient uptake by shoots and roots increased with increasing biochar rates and reached the maximum values at the biochar rate of 100 mL L-1. There were significant cubic relationships between the uptake of nutrients (N, P, and K) and biochar rates, both with and without SAP addition. In order to avoid negative effects on plant growth, the biochar application rate should be controlled at an optimal level (100 mL L-1 ). The SAP addition not only enhanced the positive effects of biochar application on the properties of the substrate, but also inhibited the excessive rise of pH and EC following biochar additions, which led to better plant growth and enhanced nutrient uptakes by water spinach.
基金supported by the National Natural Science Foundation of China(Grant No.51325305)National Key Research and Development Program(GrantNo.2016YFC1101301)Tianjin Municipal Natural Science Foundation(Grant Nos.13ZCZDSY00900,15JCZDJC38000)
文摘Constructing high strength pH sensitive supramolecular polymer hydrogel remains very challenging due to the unavoidable network swelling caused by ionization of acid or basic groups at a specified pH.In this work,we proposed a simple and very convenient approach to fabricate high strength pH responsive supramolecular polymer(SP) hydrogels by one-pot copolymerization of N-acryloyl glycinamide(NAGA) and 2-vinyl-4,6-diamino-1,3,5-triazine(VDT),two feature hydrogen bonding monomers.In these PNAGA-PVDT SP hydrogels obtained,the hydrogen bonding of NAGA was shown to play a dominant role in reinforcing strength,while the hydrogen bonding of diaminotriazine served as a pH sensitive moiety.At pH 3,the mechanical properties of PNAGA-PVDT hydrogels decreased to a different extent due to the breakup of hydrogen bonding;in contrast,the hydrogel resumed the original strength while pH was raised to 7.4 because of reconstruction of hydrogen bonding.Over the selected pH range,the PNAGA-PVDT hydrogels exhibited up to 1.25 MPa tensile strength,845% breaking strain,69 kPa Young's modulus and 21 MPa compressive strength.This novel high strength pH-responsive SP hydrogels may find applications in biomedical and industrial fields.
基金supported by the National Basic Research Program of China(2014CB643500)the National Natural Science Foundation of China(51273077,51173065)
文摘Three alcohol/water-soluble porphyrins, Zn-TPyPMeI: zinc(II) meso-tetra(N-methyl-4-pyridyl) porphyrin tetra-iodide, Zn- TPyPAdBr: zinc(II) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide and MnC1-TPyPAdBr: man- ganese(III) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide were employed as cathode interlayers to fabricate polymer solar cells (PSCs). The PCvaBM ([6,6]-phenyl C71 butyric acid methyl ester) and PCDTBT (poly[N-9"- hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',3'-benzothiadiazole)])-blend films were used as active layers in polymer solar cells (PSCs). The PSCs with alcohol/water-soluble porphyrins interlayer showed obviously higher power con- version efficiency (PCE) than those without interlayers. The highest PCE, 6.86%, was achieved for the device with MnCl- TPyPAdBr as an interlayer. Ultraviolet photoemission spectroscopic (UPS), carrier mobility, atomic force microscopy (AFM) and contact angle (0) characterizations demonstrated that the porphyrin molecules can result in the formation of interfacial dipole layer between active layer and cathode. The interfacial dipole layer can obviously improve the open-circuit voltage (Voc) and charge extraction, and sequentially lead to the increase of PCE.