Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev...Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.展开更多
In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software...In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software.Using a vector network analyzer(VNA),a static calibration experiment is conducted,and the resonant frequency distribution of oil-in-water emulsions is analyzed within an 80%–100%water holdup range.In addition,we observe and analyze the micron-sized oil bubble structure in the emulsifi ed state with an optical microscope.On this basis,a dynamic experiment of oil-in-water emulsions with high water cut and low velocity in a vertical upward pipe is conducted.S_(21) response curves of the MRS are obtained by the VNA under diff erent working conditions in real time.Finally,we analyze the relationship between the resonant frequency and water cut.Experimental results show that the MRS has an average resolution of 0.096%water cut for high water cut oil-in-water emulsions within the frequency range of 2.2–2.8 GHz.展开更多
Because of the distinction of soil property and humus content, soil water content is not ideal to indicate whether it is suitable to the growth of plant. Mainly based on the PF-a numerical value denoting the water reg...Because of the distinction of soil property and humus content, soil water content is not ideal to indicate whether it is suitable to the growth of plant. Mainly based on the PF-a numerical value denoting the water regime of soil and connected with the growth of plant, the study combined the moisture percentage of soil with PF to research in quantity the interrelation between the moisture percentage and PF in different succession phases of subalpine dark coniferous forest in Gongga Mountain. The results showed that: (1) In the same PF value, the moisture percentage in humus horizon increased gradually with the devel-opment of the succession of the dark coniferous forest; The moisture percentage of over-mature forest was the highest and>mature forest>half-mature forest>young growth forest; (2) With the increase of soil depth, the soil bulk density increased and the moisture percentage decreased, but the difference in the percentage of moisture was not notable in different succession phases. (3) In different succession series, the vegetation affected the soil water characteristics by increasing the soil organic matter, improving the soil construction, receding the soil bulk density and enhancing the soil porosity; (4) The humus horizon of the dark coniferous forest soil has the highest water holding capability in this region.展开更多
Rainwater harvesting RWH has yet to see significant uptake in UK households primarily due to a lack of innovation in residential RWH system types.This ppa er presents the results of per liminary investigations into a ...Rainwater harvesting RWH has yet to see significant uptake in UK households primarily due to a lack of innovation in residential RWH system types.This ppa er presents the results of per liminary investigations into a range of traditional and innovative residential-scale RWH systems. These systems are examined using a patent application search informal interviews with industry professionals cost-benefit analysis and a simple multi criteria analysis MCA .The latter examines the sustainability of the systems based on a priori social economic and ne vironmenat l criteria.Two of the innovative systems are subject to a more detailed analysis and benchmarked agains ta rt aditional system.Results of the MCA indicate that the innovative RWH systems achieve better sustainability scores than the traditional RWH with a lower capital cost.Further research is focused on monitoring the identified systems to generate empir cal datasets in order to undertake the WLC/LCAs and to identify challenges associated with installation.展开更多
Effects of hydraulic retention time (HRT ) and gas volume on efficiency of wastewater treatment are dis- cussed based on a simulation experiment in which the domestic swage was treated by the two-stage-bio-contact oxi...Effects of hydraulic retention time (HRT ) and gas volume on efficiency of wastewater treatment are dis- cussed based on a simulation experiment in which the domestic swage was treated by the two-stage-bio-contact oxida- tion process. The result shows that the average CODCr, BOD5 , suspended solid (SS), and ammonia-nitrogen removal rate are 94.5 %, 93.2 %, 91.7 % and 46.9 %, respectively, under the conditions of a total air/water ratio of 5∶1 , an air/water ratio of 3:1 for oxidation tank 1 and 2:1for oxidation tank 2and a hydraulic retention time of 1 h for each stage. This method is suitable for domestic sewage treatment of residential community and small towns as well.展开更多
Effect of intermittent irrigation on the production of paddy rice was studied in a well-puddled paddy field with four treatments and 2 replicates: continuous flooding irrigation (CFI), and intermittent irrigation Ⅱ-...Effect of intermittent irrigation on the production of paddy rice was studied in a well-puddled paddy field with four treatments and 2 replicates: continuous flooding irrigation (CFI), and intermittent irrigation Ⅱ-O, Ⅱ-1 and Ⅱ-2, in which plants were re-irrigated when the soil water potential fell below 0, -10, and -20 kPa, respectively, at soil depth of about 5 cm. Results showed that the reduction in soil water potential to about -10 or -20 kPa did not significantly affect the number of grains and the percentage of ripened grains. While, a lower crop growth rate (CGR) resulted from a decrease in the net assimilation rate (NAR) during intermittent irrigation Ⅱ-1 and Ⅱ-2, and there was also a reduction in the leaf area index (LAI) during intermittent irrigation Ⅱ-2. Senescence of lower leaves on stems was promoted in treatments Ⅱ-1 and Ⅱ-2 at the ripening stage. Early senescence at ripening stage and water stress around midday decreased the rate of photosynthesis in leaves, causing the lower NAR. These physiological responses of the plants were responsible for the reduction in the dry matter production and grain yield in the intermittent irrigation treatments.展开更多
Polyester mooring has become increasing popular to serve as permanent station-keeping system for deepwater floating system during recent years. Comparing to the traditional steel wire mooring,polyester mooring provide...Polyester mooring has become increasing popular to serve as permanent station-keeping system for deepwater floating system during recent years. Comparing to the traditional steel wire mooring,polyester mooring provides significant benefits in deepwater,such as reduced installed capital expenditure (CAPEX) and smaller vertical loads on host platform. Polyester rope is a visco-elastic material,and its stiffness is nonlinear and affected by mean load,load range,loading period and loading history. There is a perception that the polyester stiffness model has significant impact on the floating system's performance. This paper presents a detailed description and comparison of two stiffness models and three analytic approaches,and provides a systematic study of the impact of polyester mooring stiffness modeling on the deepwater floating system performance.展开更多
Soil water dynamics in the dominant lwo soil series (Arinic lixisol) were evaluated at the Federal University of Agriculture, Alabata, Abeokuta, Nigeria. Field capacity, infiltration and water retention characterist...Soil water dynamics in the dominant lwo soil series (Arinic lixisol) were evaluated at the Federal University of Agriculture, Alabata, Abeokuta, Nigeria. Field capacity, infiltration and water retention characteristics were evaluated in situ for a period of 161 d in the dry season for two root zone depths. Results show that the Iwo soil series has a field capacity ranging from 2.6%-5.5% at 0-45 cm and 45-90 cm root zone depths, respectively. The soil is quick draining with high infiltration rate and very poor water retention capacity confirming that the soil will require a short irrigation interval of about 2-3 d since available water for plant growth in predominantly sandy soils ranges between 2%-8%. Based on the foregoing, sprinkler irrigation is best suited for the lwo soil series, it should, however, be noted that the water application rate must be less than the infiltration rate of the soil in order to prevent surface ponding and runoff. A multivariate model relating soil moisture content with soil moisture tension and soil temperature calibrated within the study had very low model accuracy of 56% and 45% for the two root zone depths, respectively, implying the need for further studies.展开更多
To determine whether reforestation efforts in the denuded hills have significant impacts on hydrology in the Xinjiang River watershed, the authors examined eight land-cover scenarios to compare hydrologic responses an...To determine whether reforestation efforts in the denuded hills have significant impacts on hydrology in the Xinjiang River watershed, the authors examined eight land-cover scenarios to compare hydrologic responses and to provide a conceptual basis for restoration practices. The authors analyzed a 17-year time period using remote sensing to develop land-cover classification for the watershed. Climate, soil and terrain data for the watershed were used as input in the SWAT (soil and water analysis tool) to quantify and compare the impacts on hydrologic processes. The model was calibrated to a two-year record of stream discharge measurements. The results show significant increase in forest-cover on hills (13%). However, the hydrological response is not very significant considering the changes in forest-cover, the surface runoff and percolation ratios only changed by 2% and 1% over time. Installment of earthen irrigation ponds in the outlets of sub-basin with maximum runoff had provided the most significant hydrologic improvements and could provide irrigation water to increase crop yield on remaining cropland. The study will provide information to the local government to aid decision-making in sustainable reforestation programs resulting in better hydrologic functioning for sustainable water resource management.展开更多
Although the forest floor plays important roles in water-holding and nutrient cycling, there is not enough knowledge of the functional changes of the forest floor resulting from changes in vegetation. To evaluate the ...Although the forest floor plays important roles in water-holding and nutrient cycling, there is not enough knowledge of the functional changes of the forest floor resulting from changes in vegetation. To evaluate the effect on the hydrological properties of forest floor by the substitution of plantation species for native coppice, we selected four species substituting plantations and one native coppice (secondary native broad-leaved forest, dominated by Quercus liaotungensis and Corylus heterophylla var. sutchuenensis) (QC) as a comparison forest. The substituting plantations were Cercidiphyllum japonicum (Cj), Pinus tabulaeformis (Pt), Pinus armandi (Pa), Larix kaempferi (Lk). These were established in 1987 with a stocking density of approximately 2500 stem ha -1 . Thickness and the amount of floor in coniferous plantations were significantly higher compared to secondary native broad-leaved forest and pure broad- leaved plantation. The maximal water-holding capacity of the floor showed the same trend as thickness and amount of litter. Main contributors to the difference in hydrological characteristics in the plantations were the quantity of forest floor and the maximal water holding capacity per unit weight of the floor. The relationships between water absorption processes, water absorption rate and the immersion time for litter, fitted to logarithmic and exponential regressions, respectively. Water absorption processes differed significantly between the various plantations and different decomposition floor horizons. Water absorption characteristics were influenced by leaf structure in various tree species and the degree of decomposed litter. Our results showed that litter amount in coniferous plantations were significantly higher than in deciduous broad-leaved plantation. This suggests that a large amount of nutrients are held in the litter horizon, delaying return to the soil and utilization by plants. At the same time, maximal water-holding capacity of the forest floor in F [fermentation] and H [hummus] horizons was significantly higher than that in L [fresh litter] horizon. Therefore, improving litter transformation from L horizon to F and H horizons by promoting forest floor environment would be one of the best methods for plantation management.展开更多
Soil management matters in semiarid lands are key to have acceptable yields and to preserve diversity. After the major agricultural intensification underwent in the semiarid lands of Monegros, NE Spain, custom tailore...Soil management matters in semiarid lands are key to have acceptable yields and to preserve diversity. After the major agricultural intensification underwent in the semiarid lands of Monegros, NE Spain, custom tailored tools are needed to reconcile agriculture with habitats conservation. The objectives of this study were to quantify the effect of soil properties of two distinctly colored soils, white patches (WP) and dark patches (DP), dominant in the arid landscape of the central Ebro Basin, Spain on winter cereal grain yield and to prove that superficial soil color could be used as a visual diagnostic criterion for evaluation of agricultural practices in arid lands. Significant differences between WP and DP soils were found in gypsum, carbonate contents, available water holding capacity and infiltration rate. The grain yield ranged from 51 to 5 713 kg ha-1. Significantly lower yields (P 〈 0.01) and precipitation-use efficiency (P 〈 0.05) were attained in the WP soils for the three seasons studied. This difference increased with the average rainfall due to the significantly lower soil water infiltration (P 〈 0.01) and water holding capacity (P 〈 0.05) found in the gypseous soils. Our results show that mapping the soil surface color at farm scale can be a low=cost tool for optimizing agricultural practices and recovering the natural vegetation. This approach can be advantageous in similar arid or semiarid environments around the world.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51527805,11572220 and 41174109)
文摘Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
基金supported by the National Natural Science Foundation of China(Grant Nos.42074142 and 51527805)。
文摘In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software.Using a vector network analyzer(VNA),a static calibration experiment is conducted,and the resonant frequency distribution of oil-in-water emulsions is analyzed within an 80%–100%water holdup range.In addition,we observe and analyze the micron-sized oil bubble structure in the emulsifi ed state with an optical microscope.On this basis,a dynamic experiment of oil-in-water emulsions with high water cut and low velocity in a vertical upward pipe is conducted.S_(21) response curves of the MRS are obtained by the VNA under diff erent working conditions in real time.Finally,we analyze the relationship between the resonant frequency and water cut.Experimental results show that the MRS has an average resolution of 0.096%water cut for high water cut oil-in-water emulsions within the frequency range of 2.2–2.8 GHz.
基金The Development Plan of the State Key Fundamental Research of China (973), contract No. 2000046807 and by Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-405)
文摘Because of the distinction of soil property and humus content, soil water content is not ideal to indicate whether it is suitable to the growth of plant. Mainly based on the PF-a numerical value denoting the water regime of soil and connected with the growth of plant, the study combined the moisture percentage of soil with PF to research in quantity the interrelation between the moisture percentage and PF in different succession phases of subalpine dark coniferous forest in Gongga Mountain. The results showed that: (1) In the same PF value, the moisture percentage in humus horizon increased gradually with the devel-opment of the succession of the dark coniferous forest; The moisture percentage of over-mature forest was the highest and>mature forest>half-mature forest>young growth forest; (2) With the increase of soil depth, the soil bulk density increased and the moisture percentage decreased, but the difference in the percentage of moisture was not notable in different succession phases. (3) In different succession series, the vegetation affected the soil water characteristics by increasing the soil organic matter, improving the soil construction, receding the soil bulk density and enhancing the soil porosity; (4) The humus horizon of the dark coniferous forest soil has the highest water holding capability in this region.
基金Severn Trent Water and the EPSRC as part of the STREAM Engineering Doctorate Program
文摘Rainwater harvesting RWH has yet to see significant uptake in UK households primarily due to a lack of innovation in residential RWH system types.This ppa er presents the results of per liminary investigations into a range of traditional and innovative residential-scale RWH systems. These systems are examined using a patent application search informal interviews with industry professionals cost-benefit analysis and a simple multi criteria analysis MCA .The latter examines the sustainability of the systems based on a priori social economic and ne vironmenat l criteria.Two of the innovative systems are subject to a more detailed analysis and benchmarked agains ta rt aditional system.Results of the MCA indicate that the innovative RWH systems achieve better sustainability scores than the traditional RWH with a lower capital cost.Further research is focused on monitoring the identified systems to generate empir cal datasets in order to undertake the WLC/LCAs and to identify challenges associated with installation.
文摘Effects of hydraulic retention time (HRT ) and gas volume on efficiency of wastewater treatment are dis- cussed based on a simulation experiment in which the domestic swage was treated by the two-stage-bio-contact oxida- tion process. The result shows that the average CODCr, BOD5 , suspended solid (SS), and ammonia-nitrogen removal rate are 94.5 %, 93.2 %, 91.7 % and 46.9 %, respectively, under the conditions of a total air/water ratio of 5∶1 , an air/water ratio of 3:1 for oxidation tank 1 and 2:1for oxidation tank 2and a hydraulic retention time of 1 h for each stage. This method is suitable for domestic sewage treatment of residential community and small towns as well.
基金Project (No. 49971043) supported partly by the National Natural Science Foundation of China.
文摘Effect of intermittent irrigation on the production of paddy rice was studied in a well-puddled paddy field with four treatments and 2 replicates: continuous flooding irrigation (CFI), and intermittent irrigation Ⅱ-O, Ⅱ-1 and Ⅱ-2, in which plants were re-irrigated when the soil water potential fell below 0, -10, and -20 kPa, respectively, at soil depth of about 5 cm. Results showed that the reduction in soil water potential to about -10 or -20 kPa did not significantly affect the number of grains and the percentage of ripened grains. While, a lower crop growth rate (CGR) resulted from a decrease in the net assimilation rate (NAR) during intermittent irrigation Ⅱ-1 and Ⅱ-2, and there was also a reduction in the leaf area index (LAI) during intermittent irrigation Ⅱ-2. Senescence of lower leaves on stems was promoted in treatments Ⅱ-1 and Ⅱ-2 at the ripening stage. Early senescence at ripening stage and water stress around midday decreased the rate of photosynthesis in leaves, causing the lower NAR. These physiological responses of the plants were responsible for the reduction in the dry matter production and grain yield in the intermittent irrigation treatments.
文摘Polyester mooring has become increasing popular to serve as permanent station-keeping system for deepwater floating system during recent years. Comparing to the traditional steel wire mooring,polyester mooring provides significant benefits in deepwater,such as reduced installed capital expenditure (CAPEX) and smaller vertical loads on host platform. Polyester rope is a visco-elastic material,and its stiffness is nonlinear and affected by mean load,load range,loading period and loading history. There is a perception that the polyester stiffness model has significant impact on the floating system's performance. This paper presents a detailed description and comparison of two stiffness models and three analytic approaches,and provides a systematic study of the impact of polyester mooring stiffness modeling on the deepwater floating system performance.
文摘Soil water dynamics in the dominant lwo soil series (Arinic lixisol) were evaluated at the Federal University of Agriculture, Alabata, Abeokuta, Nigeria. Field capacity, infiltration and water retention characteristics were evaluated in situ for a period of 161 d in the dry season for two root zone depths. Results show that the Iwo soil series has a field capacity ranging from 2.6%-5.5% at 0-45 cm and 45-90 cm root zone depths, respectively. The soil is quick draining with high infiltration rate and very poor water retention capacity confirming that the soil will require a short irrigation interval of about 2-3 d since available water for plant growth in predominantly sandy soils ranges between 2%-8%. Based on the foregoing, sprinkler irrigation is best suited for the lwo soil series, it should, however, be noted that the water application rate must be less than the infiltration rate of the soil in order to prevent surface ponding and runoff. A multivariate model relating soil moisture content with soil moisture tension and soil temperature calibrated within the study had very low model accuracy of 56% and 45% for the two root zone depths, respectively, implying the need for further studies.
文摘To determine whether reforestation efforts in the denuded hills have significant impacts on hydrology in the Xinjiang River watershed, the authors examined eight land-cover scenarios to compare hydrologic responses and to provide a conceptual basis for restoration practices. The authors analyzed a 17-year time period using remote sensing to develop land-cover classification for the watershed. Climate, soil and terrain data for the watershed were used as input in the SWAT (soil and water analysis tool) to quantify and compare the impacts on hydrologic processes. The model was calibrated to a two-year record of stream discharge measurements. The results show significant increase in forest-cover on hills (13%). However, the hydrological response is not very significant considering the changes in forest-cover, the surface runoff and percolation ratios only changed by 2% and 1% over time. Installment of earthen irrigation ponds in the outlets of sub-basin with maximum runoff had provided the most significant hydrologic improvements and could provide irrigation water to increase crop yield on remaining cropland. The study will provide information to the local government to aid decision-making in sustainable reforestation programs resulting in better hydrologic functioning for sustainable water resource management.
基金the National Natural Science Foundation of China(No.40701181)the Strategic Leader in Science and Technology Projects(No.XDA05070306)+1 种基金the National Science & Technology Pillar Program in12th Five-year Plan of China(No.2011BAC09B04-02)Main Direction Program of Knowledge Innovation of CAS(No.KSCX2-EW-J-22)
文摘Although the forest floor plays important roles in water-holding and nutrient cycling, there is not enough knowledge of the functional changes of the forest floor resulting from changes in vegetation. To evaluate the effect on the hydrological properties of forest floor by the substitution of plantation species for native coppice, we selected four species substituting plantations and one native coppice (secondary native broad-leaved forest, dominated by Quercus liaotungensis and Corylus heterophylla var. sutchuenensis) (QC) as a comparison forest. The substituting plantations were Cercidiphyllum japonicum (Cj), Pinus tabulaeformis (Pt), Pinus armandi (Pa), Larix kaempferi (Lk). These were established in 1987 with a stocking density of approximately 2500 stem ha -1 . Thickness and the amount of floor in coniferous plantations were significantly higher compared to secondary native broad-leaved forest and pure broad- leaved plantation. The maximal water-holding capacity of the floor showed the same trend as thickness and amount of litter. Main contributors to the difference in hydrological characteristics in the plantations were the quantity of forest floor and the maximal water holding capacity per unit weight of the floor. The relationships between water absorption processes, water absorption rate and the immersion time for litter, fitted to logarithmic and exponential regressions, respectively. Water absorption processes differed significantly between the various plantations and different decomposition floor horizons. Water absorption characteristics were influenced by leaf structure in various tree species and the degree of decomposed litter. Our results showed that litter amount in coniferous plantations were significantly higher than in deciduous broad-leaved plantation. This suggests that a large amount of nutrients are held in the litter horizon, delaying return to the soil and utilization by plants. At the same time, maximal water-holding capacity of the forest floor in F [fermentation] and H [hummus] horizons was significantly higher than that in L [fresh litter] horizon. Therefore, improving litter transformation from L horizon to F and H horizons by promoting forest floor environment would be one of the best methods for plantation management.
基金Supported by the Project of Spanish Government(No.AGL2009-08931)
文摘Soil management matters in semiarid lands are key to have acceptable yields and to preserve diversity. After the major agricultural intensification underwent in the semiarid lands of Monegros, NE Spain, custom tailored tools are needed to reconcile agriculture with habitats conservation. The objectives of this study were to quantify the effect of soil properties of two distinctly colored soils, white patches (WP) and dark patches (DP), dominant in the arid landscape of the central Ebro Basin, Spain on winter cereal grain yield and to prove that superficial soil color could be used as a visual diagnostic criterion for evaluation of agricultural practices in arid lands. Significant differences between WP and DP soils were found in gypsum, carbonate contents, available water holding capacity and infiltration rate. The grain yield ranged from 51 to 5 713 kg ha-1. Significantly lower yields (P 〈 0.01) and precipitation-use efficiency (P 〈 0.05) were attained in the WP soils for the three seasons studied. This difference increased with the average rainfall due to the significantly lower soil water infiltration (P 〈 0.01) and water holding capacity (P 〈 0.05) found in the gypseous soils. Our results show that mapping the soil surface color at farm scale can be a low=cost tool for optimizing agricultural practices and recovering the natural vegetation. This approach can be advantageous in similar arid or semiarid environments around the world.