A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible flu...A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.展开更多
An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surf...An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.展开更多
The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realis...The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation展开更多
The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This ...The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid(VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation forfurther studying the hydrodynamic performance of a propeller in waves.展开更多
基金the National Natural Science Foundation of China (No.50074035).
文摘A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.
基金supported by the marine research center of Amirkabir University of Technology
文摘An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.
基金Supported by National Natural Science Foundation of China (41176074, 51209048,51379043,51409063) High tech ship research project of Ministry of industry and technology (G014613002) The support plan for youth backbone teachers of Harbin Engineering University (HEUCFQ1408)
文摘The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation
基金Supported by the National Natural Science Foundation of China (51379043, 41176074, 51209048, 51409063), High Tech Ship Research Project of Ministry of Industry and Technology (G014613002), and the Support Plan for Youth Backbone Teachers of Harbin Engineering University (HEUCFQ 1408)
文摘The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid(VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation forfurther studying the hydrodynamic performance of a propeller in waves.