期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
气体扩散层孔隙率梯度对质子交换膜燃料电池水管理的影响 被引量:9
1
作者 程植源 周荣良 +2 位作者 李嘉颀 纪嘉树 闫伟 《内燃机与动力装置》 2022年第3期41-47,共7页
为了研究孔隙率对气体扩散层(gas diffusion layer,GDL)内水分布的影响,使用COMSOLMultiphysics软件构建质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)模型,以单一孔隙为0.4的GDL为基准,设计小梯度双层、大梯度双层、... 为了研究孔隙率对气体扩散层(gas diffusion layer,GDL)内水分布的影响,使用COMSOLMultiphysics软件构建质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)模型,以单一孔隙为0.4的GDL为基准,设计小梯度双层、大梯度双层、4层梯度3种不同GDL分布结构,对其极化曲线和水含量进行仿真分析。结果表明:相比基准GDL,具有梯度结构的GDL可以有效防止“水淹”现象发生,并能在一定程度上提升电池性能;在平均孔隙率相同时,可以通过加大孔隙率梯度或增加孔隙率梯度分层数量来提高电池阴极侧的排水性能,从而提升电池电流密度;使用具有较大梯度分布与较多梯度分层的GDL能有效提升燃料电池的水管理效率和电池性能。该研究可以有效解决燃料电池的“水淹”问题。 展开更多
关键词 PEMFC GDL 水摩尔分数 孔隙率梯度
下载PDF
Sponge Effect on Coal Mine Methane Separation Based on Clathrate Hydrate Method 被引量:14
2
作者 ZHANG Baoyong CHENG Yuanping WU Qiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第4期610-614,共5页
The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carrie... The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment. 展开更多
关键词 coal mine methane separation clathrate hydrate SPONGE porous media mass transfer
下载PDF
Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and transport 被引量:20
3
作者 FANG ShuangXi Pieter P.TANS +3 位作者 YAO Bo LUAN Tian WU YanLing YU DaJiang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第10期1886-1895,共10页
Atmospheric CO_2 and CH_4 have been continuously measured since 2009 at Longfengshan WMO/GAW station(LFS) in China. Variations of the mole fractions, influence of long-distance transport, effects of local sources/sink... Atmospheric CO_2 and CH_4 have been continuously measured since 2009 at Longfengshan WMO/GAW station(LFS) in China. Variations of the mole fractions, influence of long-distance transport, effects of local sources/sinks and the characteristics of synoptic scale variations have been studied based on the records from 2009 to 2013. Both the CO_2 and CH_4 mole fractions display increasing trends in the last five years, with growth rates of 3.1±0.02 ppm yr.1 for CO_2 and 8±0.04 ppb yr.1(standard error, 1-σ)for CH_4. In summer, the regional CO_2 mole fractions are apparently lower than the Marine Boundary Layer reference, with the lowest value of.13.6±0.7 ppm in July, while the CH_4 values are higher than the MBL reference, with the maximum of 139±6 ppb.From 9 to 17(Local time, LT) in summer, the atmospheric CO_2 mole fractions at 10 m a.g.l. are always lower than at 80 m, with a mean difference of.1.1±0.2 ppm, indicating that the flask sampling approach deployed may underestimate the background mole fractions in summer. In winter, anthropogenic emissions dominate the regional CO_2 and CH_4 mole fractions. Cluster analysis of backward trajectories shows that atmospheric CO_2 and CH_4 at LFS are influenced by anthropogenic emissions from the southwest(Changchun and Jilin city) all year. The synoptic scale variations indicate that the northeastern China plain acts as an important source of atmospheric CO_2 and CH_4 in winter. 展开更多
关键词 Carbon dioxide Methane Observation Backward trajectory Atmospheric transport
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部