The key aspect in planning and management of water resources is to analyze the runoff potential and erosion status of the river basin.For the detailed investigation of hydrological response freely available Cartosat-1...The key aspect in planning and management of water resources is to analyze the runoff potential and erosion status of the river basin.For the detailed investigation of hydrological response freely available Cartosat-1(IRS-P5) data was used for the preparation of digital elevation model(DEM).The runoff potential and type of erosive process of 22 river basins originating in the global biodiversity hotspot of Western Ghats,was inferred through hypsometric analysis.Several parameters like Hypsometric integral(HI),maximum concavity(Eh),coordinates of slope inflection point(I) given by a* and h* and normalized height of hypsometric curve(h) were extracted from the hypsometric curves and used for understanding the hydrological responses.From the hypsometric curves,the landform evolution processes were inferred.Contribution of diffusive and fluvial processes in slope degradation of the river basins was understood.Basins with lesser area(<100 km^2) were found to have a positive correlation between hypsometric integral and basin area,whereas for large basins no such correlation exists.Based on the study,river basins can be prioritized for the appropriate conservation measures.展开更多
To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) metho...To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) methods. A distributed hydrological model was developed, and watershed parameters were determined based on satellite imagery, digital terrain models, digital maps and field investigations. Two types of erosion control measures were investigated: the variation of vegetation covers and the change of cultivation techniques. Seven scenarios were considered for the test watershed. The results show: (1) while the de-vegetation results in the increase of peak discharge, the improve of vegetation covers decreases peak discharge at watershed scale; (2) by both improving vegetation cover and enhancing terrace-cultivation technology, the peak discharge is reduced and the peak flow arrival time is delayed; (3) attention should be attached to both early warning system and measures changing the underlying surface and conveyance systems.展开更多
A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated...A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated according to the 8-direction pour point model, and then the flow accumulation grid from the flow direction grid. With the flow accumulation grid, streams are defined according to the given threshold value of flow accumulation. Taking Gufo River watershed as an example, the extraction of drainage network was done from DEM. The results are basically consistent with the digitized drainage network from the relief maps.展开更多
The Loxahatchee Impoundment Landscape Assessment (LILA) facility is a unique physical model of the Everglades ecosystem. LILA has a closed-loop water delivery system and consists of four 0.08 square kilometer (-8 h...The Loxahatchee Impoundment Landscape Assessment (LILA) facility is a unique physical model of the Everglades ecosystem. LILA has a closed-loop water delivery system and consists of four 0.08 square kilometer (-8 ha) macrocosms, created to be replicates of one another and of the Everglades landscape. Built in 2003, LILA's purpose is to provide scientists with an opportunity to design and implement research concerning Everglades restoration techniques in an accessible, controlled and replicated Everglades environment. Key Everglades habitats were sculpted within LILA: tree islands, ridges, sloughs and alligator holes. Water levels and flows in each macrocosm are controlled independently, so that researchers can study the effects of hydrology on Everglades landscape and ecology. Studies have focused upon measuring survival and growth of native trees planted on the tree islands; measuring surface water and ground water movement and chemistry; studying wading bird feeding and the movement of prey species (crayfish); and measuring erosion and accretion on tree islands and ridges. We developed a Geographic Information System (GIS) data set to identify, characterize, and spatially reference the features of LILA and document research activities. This development included mapping the boundaries of the landscape features, creating a theoretical Digital Elevation Model (DEM) and describing the research projects being carried out. The creation of this GIS data set enhances the ability to schedule and coordinate research, assist scientists in the visualization and spatial representation of their research, and provide a resource for the storage, analysis and synthesis of valuable scientific information.展开更多
Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts...Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts etc. And it is especially remarkable in semi-humid and semi-arid region. In this paper, the impacts of climate change on the hydrological cycle were analyzed for the Hai River Basin, a semi-humid and semi-arid basin and also the water receiving area of the middle route of South-to-North Water Diversion project. Meanwhile it is the most vulnerable to climate change. Firstly, the linear regression and Mann-Kendall non-parametric test methods were used to analyze the change characteristics of the hydrological and meteorological elements for the period from 1960 to 2009. The results show a significant increase in temperature, while precipitation decreases slightly, and runoff decreases drastically over the past 50 years. Secondly, the applicability of SWAT (Soil and Water Assessment Tool) model based on the DEM (Digital Elevation Model), land use and soil type was verified in the basin. Results show the model performs well in this basin. Furthermore, the water balance model, Fu's theory and Koichiro's theory were used to calculate the actual evaporation, comparing to the simulated actual evaporation by SWAT model to validate the result for the lack of large-scale observed evaporation datasets. Possible reasons were also analyzed to explore the reasonable factor for the decline of the runoff. Finally the precipitation, temperature, runoff and evaporation response processes based on the IPCC AR4 multi-mode climate models and the verified SWAT model under different GHG emission scenarios (SRES-A2, AIB and B1) in the 21st century were discussed in three time periods: 2020s (2011-2040), 20S0s (2041-2070), 2080s (2071-2099). Results show that there are systematic positive trends for precipitation and temperature while the trends for runoff and evaporation will differ among sub-areas. The results will offer some references for adaptive water management in a changing environment, also including adaptation of a cross-basin water transfer project.展开更多
文摘The key aspect in planning and management of water resources is to analyze the runoff potential and erosion status of the river basin.For the detailed investigation of hydrological response freely available Cartosat-1(IRS-P5) data was used for the preparation of digital elevation model(DEM).The runoff potential and type of erosive process of 22 river basins originating in the global biodiversity hotspot of Western Ghats,was inferred through hypsometric analysis.Several parameters like Hypsometric integral(HI),maximum concavity(Eh),coordinates of slope inflection point(I) given by a* and h* and normalized height of hypsometric curve(h) were extracted from the hypsometric curves and used for understanding the hydrological responses.From the hypsometric curves,the landform evolution processes were inferred.Contribution of diffusive and fluvial processes in slope degradation of the river basins was understood.Basins with lesser area(<100 km^2) were found to have a positive correlation between hypsometric integral and basin area,whereas for large basins no such correlation exists.Based on the study,river basins can be prioritized for the appropriate conservation measures.
文摘To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) methods. A distributed hydrological model was developed, and watershed parameters were determined based on satellite imagery, digital terrain models, digital maps and field investigations. Two types of erosion control measures were investigated: the variation of vegetation covers and the change of cultivation techniques. Seven scenarios were considered for the test watershed. The results show: (1) while the de-vegetation results in the increase of peak discharge, the improve of vegetation covers decreases peak discharge at watershed scale; (2) by both improving vegetation cover and enhancing terrace-cultivation technology, the peak discharge is reduced and the peak flow arrival time is delayed; (3) attention should be attached to both early warning system and measures changing the underlying surface and conveyance systems.
文摘A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated according to the 8-direction pour point model, and then the flow accumulation grid from the flow direction grid. With the flow accumulation grid, streams are defined according to the given threshold value of flow accumulation. Taking Gufo River watershed as an example, the extraction of drainage network was done from DEM. The results are basically consistent with the digitized drainage network from the relief maps.
文摘The Loxahatchee Impoundment Landscape Assessment (LILA) facility is a unique physical model of the Everglades ecosystem. LILA has a closed-loop water delivery system and consists of four 0.08 square kilometer (-8 ha) macrocosms, created to be replicates of one another and of the Everglades landscape. Built in 2003, LILA's purpose is to provide scientists with an opportunity to design and implement research concerning Everglades restoration techniques in an accessible, controlled and replicated Everglades environment. Key Everglades habitats were sculpted within LILA: tree islands, ridges, sloughs and alligator holes. Water levels and flows in each macrocosm are controlled independently, so that researchers can study the effects of hydrology on Everglades landscape and ecology. Studies have focused upon measuring survival and growth of native trees planted on the tree islands; measuring surface water and ground water movement and chemistry; studying wading bird feeding and the movement of prey species (crayfish); and measuring erosion and accretion on tree islands and ridges. We developed a Geographic Information System (GIS) data set to identify, characterize, and spatially reference the features of LILA and document research activities. This development included mapping the boundaries of the landscape features, creating a theoretical Digital Elevation Model (DEM) and describing the research projects being carried out. The creation of this GIS data set enhances the ability to schedule and coordinate research, assist scientists in the visualization and spatial representation of their research, and provide a resource for the storage, analysis and synthesis of valuable scientific information.
基金supported by National Basic Research Program of China(2010CB428406)the National Natural Science Foundation of China (No. 41071025/40730632)MWR Commonweal Project (200801001)
文摘Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts etc. And it is especially remarkable in semi-humid and semi-arid region. In this paper, the impacts of climate change on the hydrological cycle were analyzed for the Hai River Basin, a semi-humid and semi-arid basin and also the water receiving area of the middle route of South-to-North Water Diversion project. Meanwhile it is the most vulnerable to climate change. Firstly, the linear regression and Mann-Kendall non-parametric test methods were used to analyze the change characteristics of the hydrological and meteorological elements for the period from 1960 to 2009. The results show a significant increase in temperature, while precipitation decreases slightly, and runoff decreases drastically over the past 50 years. Secondly, the applicability of SWAT (Soil and Water Assessment Tool) model based on the DEM (Digital Elevation Model), land use and soil type was verified in the basin. Results show the model performs well in this basin. Furthermore, the water balance model, Fu's theory and Koichiro's theory were used to calculate the actual evaporation, comparing to the simulated actual evaporation by SWAT model to validate the result for the lack of large-scale observed evaporation datasets. Possible reasons were also analyzed to explore the reasonable factor for the decline of the runoff. Finally the precipitation, temperature, runoff and evaporation response processes based on the IPCC AR4 multi-mode climate models and the verified SWAT model under different GHG emission scenarios (SRES-A2, AIB and B1) in the 21st century were discussed in three time periods: 2020s (2011-2040), 20S0s (2041-2070), 2080s (2071-2099). Results show that there are systematic positive trends for precipitation and temperature while the trends for runoff and evaporation will differ among sub-areas. The results will offer some references for adaptive water management in a changing environment, also including adaptation of a cross-basin water transfer project.