For understanding the reasons that caused the degradation of water quality in lower order streams, systematic sampling was conducted at different spatial locations aiong the low order streams (1 st-5th) of Ashihe Ri...For understanding the reasons that caused the degradation of water quality in lower order streams, systematic sampling was conducted at different spatial locations aiong the low order streams (1 st-5th) of Ashihe River continuum in Maoershan Experimental Forest of Northeast Forestry University, Sharlgzhi City, Heilongjiang Province, China. The indexes of stream water quality, i.e., the pH, dissolved oxygen(DO), turbidity, temperature, PO43-P, NO3-N and NH4^+-N concentrations, total dissolved inorganic nitrogen (TDIN-N, including concentrations of NO3^+-N and NH4^+-N), and total phosphorus (inorganic and organic phosphorous, TP) were measured and analyzed. The stream order, related environmental settings and land-use type were recorded for each sampling location. The indexes of stream water quality at different locations with different stream orders and land use types were compared by ANOVA analysis. The indexes of stream water quality at different sampling locations were analyzed by Hierarchical cluster analysis. Result showed that water quality had significant difference in different stream orders and land use types; some locations with different stream features (stream order and land use type) were grouped into same clusters, indicating that random disturbances produced the variations in water quality, which made the spatial variances of stream water quality inconsistent with the general rules.展开更多
Normalized difference vegetation index (NDVI) data, obtained from remote sensing information, are essential in the Shuttleworth-Wallace (S-W) model for estimation of evapotranspiration. In order to study the effect of...Normalized difference vegetation index (NDVI) data, obtained from remote sensing information, are essential in the Shuttleworth-Wallace (S-W) model for estimation of evapotranspiration. In order to study the effect of temporal resolution of NDVI on potential evapotranspiration (PET) estimation and hydrological model performance, monthly and 10-day NDVI data set were used to estimate potential evapotranspiration from January 1985 to December 1987 in Huangnizhuang catchment, Anhui Province, China. The differences of the two calculation results were analyzed and used to drive the block-wise use of the TOPMODEL with the Muskingum-Cunge routing (BTOPMC) model to test the effect on model performance. The results show that both annual and monthly PETs estimated by 10-day NDVI are lower than those estimated by monthly NDVI. Annual PET from the vegetation root zone (PETr) lowers 9.77%-13.64% and monthly PETr lowers 3.28%-17.44% in the whole basin. PET from the vegetation interception (PETi) shows the same trend as PETr. In addition, temporal resolution of NDVI has more effect on PETr in summer and on PETi in winter. The correlation between PETr as estimated by 10-day NDVI and pan measurement (R2= 0.835) is better than that between monthly NDVI and pan measurement (R2 = 0.775). The two potential evapotranspiration estimates were used to drive the BTOPMC model and calibrate parameters, and model performance was found to be similar. In summary, the effect of temporal resolution of NDVI on potential evapotranspiration estimation is significant, but trivial on hydrological model performance.展开更多
This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability...This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability(RIC) of the herbs and shrubs was evaluated in rainfall interception experiment at the end of the third, fourth and fifth month of the growth period in 2007. The leaf transpiration rate and the effects of roots on promoting soil moisture evaporation in these plants were also assessed in transpiration experiment and root-soil composite system evaporation experiment in the five month's growth period. It is found that the RIC of the fourstudied herbs follows the order of E. repens, E. dahuricus, A. trachycaulum and L. secalinus; the RIC of the four shrubs follows the order of A. canescens, Z. xanthoxylon, C. korshinskii and N. tangutorum. The RIC of all the herbs is related linearly to their mean height and canopy area(R^2 ≥ 0.9160). The RIC of all the shrubs bears a logarithmic relationship with their mean height(R^2 ≥ 0.9164), but a linear one with their canopy area(R^2 ≥ 0.9356). Moreover, different species show different transpiration rates. Of the four herbs, E. repens has the highest transpiration rate of 1.07 mg/(m^2·s), and of the four shrubs, A. canescens has the highest transpiration rate(0.74 mg/(m^2·s)). The roots of all the herbs and shrubs can promote soil moisture evaporation. Of the four herbs, the evaporation rate of E. repens root-soil composite system is the highest(2.14%), and of the four shrubs,the root-soil composite system of A. canescens has the highest evaporation rate(1.41%). The evaporation rate of the root-soil composite system of E. dahuricus and Z. xanthoxylon bears a second-power linear relationship with evaporation time(R^2 ≥ 0.9924). The moisture content of all the eight root-soil composite systems decreases exponentially with evaporation time(R^2 ≥ 0.8434). The evaporation rate and moisture content of all the plants' root-soil composite systems increases logarithmically(R^2 ≥ 0.9606) and linearly(R^2 ≥ 0.9777) with root volume density. The findings of this study indicate that among the four herbs and four shrubs, E. repens and A. canescens possess the most effective hydrological effects in reducing the soil erosion and shallow landslide in this region.展开更多
Predicting evaporation rate is one of important elements for hydrology planning. There are several methods to estimate evaporation from a water surface. The objective of this study was to test the capability of artifi...Predicting evaporation rate is one of important elements for hydrology planning. There are several methods to estimate evaporation from a water surface. The objective of this study was to test the capability of artificial neural networks (ANNs) to predict evaporation using 10 years data set (1999 to 2008) from Ahvaz meteorological station and has been compared with values obtained using pan evaporation. Software Qnet 2000 has been utilized to model the evaporation. The Qnet 2000 was trained with monthly climate data (Solar radiation, minimum and maximum temperature, minimum and maximum relative humidity, and wind velocity) as input. The model was approximately implemented 144 times that finally hyperbolic secant stimulant function of 4 input parameters including minimum temperature, maximum temperature, solar radiation and wind velocity and 6 nodes in hidden layer has been yielded the best outcome. Correlation coefficients (R2) in training and testing sections are to 97.4% and 97.3% respectively. Also maximum errors in training and testing sections equaled to 18% and 24% respectively. Results showed ANNs approach works well for the data set used in this region.展开更多
The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial ...The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial information (STMB) versus refined spatial information map (RSIM)) of soil physical properties, including field capacity, soil porosity and saturated hydraulic conductivity are used respectively as input data for Water Flow Model for Lake Catchment (WATLAC) to determine their effectiveness in simulating hydrological processes and to expound the effects on model performance in terms of estimating groundwater recharge, soil evaporation, runoff generation as well as partitioning of surface and subsurface water flow. The results show that: 1) the simulated stream flow hydrographs based on the STMB and RSIM soil data reproduce the observed hydrographs well. There is no significant increase in model accuracy as more precise soil physical properties information being used, but WATLAC model using the RSIM soil data could predict more runoff volume and reduce the relative runoff depth errors; 2) the groundwater recharges have a consistent trend for both cases, while the STMB soil data tend to produce higher groundwater recharges than the RSIM soil data. In addition, the spatial distribution of annual groundwater recharge is significantly affected by the spatial distribution of soil physical properties; 3) the soil evaporation simulated using the STMB and RSIM soil data are similar to each other, and the spatial distribution patterns are also insensitive to the spatial information of soil physical properties; and 4) although the different spatial information of soil physical properties does not cause apparent difference in overall stream flow, the partitioning of surface and subsurface water flow is distinct. The implications of this study are that the refined spatial information of soil physical properties does not necessarily contribute to a more accurate prediction of stream flow, and the selection of appropriate soil physical property data needs to consider the scale of watersheds and the level of accuracy required.展开更多
Hydraulic redistribution(HR)refers to the process of soil water transport through the low-resistance pathway provided by plant roots.It has been observed in field studies and proposed to be one of the processes that e...Hydraulic redistribution(HR)refers to the process of soil water transport through the low-resistance pathway provided by plant roots.It has been observed in field studies and proposed to be one of the processes that enable plants to resist water limitations.However,most land-surface models(LSMs)currently do not include this underground root process.In this study,a HR scheme was incorporated into the Community Land Model version 4.5(CLM4.5)to investigate the effect of HR on the eco-hydrological cycle.Two paired numerical simulations(with and without the new HR scheme)were conducted for the Tapajos National Forest km83(BRSa3)site and the Amazon.Simulations for the BRSa3 site in the Amazon showed that HR during the wet season was small,<0.1 mm day^(–1),transferring water from shallow wet layers to deep dry layers at night;however,HR in the dry season was more obvious,up to 0.3 mm day^(–1),transferring water from deep wet layers to shallow dry layers at night.By incorporating HR into CLM4.5,the new model increased gross primary production(GPP)and evapotranspiration(ET)by 10%and 15%,respectively,at the BRSa3 site,partly overcoming the underestimation.For the Amazon,regional analysis also revealed that vegetation responses(including GPP and ET)to seasonal drought and the severe drought of 2005 were better captured with the HR scheme incorporated.展开更多
In a case study in Tao River Basin, China, we derived a high spatial-resolution regional distribution of evapotranspiration(ET) using the single crop coefficient method and Budyko equation. We then further analyzed th...In a case study in Tao River Basin, China, we derived a high spatial-resolution regional distribution of evapotranspiration(ET) using the single crop coefficient method and Budyko equation. We then further analyzed the spatio-temporal characteristics of this diverse eco-hydrological basin from 2001–2010. The results suggest that the single crop coefficient method based on leaf area index captures better spatial and temporal dynamics of the regional ET than did the Budyko Equation method. The rising temperature was the main reason for the increasing ET in the Tao River Basin during 2001–2010. Areas with high ET efficiency were distributed mainly in the areas where the vegetation coverage was high, and a lower runoff coefficient responded. The estimated spatial patterns of ET allowed an improved understanding of the eco-hydrological processes within the Tao River Basin and the method used might be generalized as a reference for future regional-scale eco-hydrological research.展开更多
基金This research was supported by a grant of the National Nature Science Foundation of China (No. 30370277).
文摘For understanding the reasons that caused the degradation of water quality in lower order streams, systematic sampling was conducted at different spatial locations aiong the low order streams (1 st-5th) of Ashihe River continuum in Maoershan Experimental Forest of Northeast Forestry University, Sharlgzhi City, Heilongjiang Province, China. The indexes of stream water quality, i.e., the pH, dissolved oxygen(DO), turbidity, temperature, PO43-P, NO3-N and NH4^+-N concentrations, total dissolved inorganic nitrogen (TDIN-N, including concentrations of NO3^+-N and NH4^+-N), and total phosphorus (inorganic and organic phosphorous, TP) were measured and analyzed. The stream order, related environmental settings and land-use type were recorded for each sampling location. The indexes of stream water quality at different locations with different stream orders and land use types were compared by ANOVA analysis. The indexes of stream water quality at different sampling locations were analyzed by Hierarchical cluster analysis. Result showed that water quality had significant difference in different stream orders and land use types; some locations with different stream features (stream order and land use type) were grouped into same clusters, indicating that random disturbances produced the variations in water quality, which made the spatial variances of stream water quality inconsistent with the general rules.
基金Under the auspices of National Basic Research Program of China (No. 2006CB400502)
文摘Normalized difference vegetation index (NDVI) data, obtained from remote sensing information, are essential in the Shuttleworth-Wallace (S-W) model for estimation of evapotranspiration. In order to study the effect of temporal resolution of NDVI on potential evapotranspiration (PET) estimation and hydrological model performance, monthly and 10-day NDVI data set were used to estimate potential evapotranspiration from January 1985 to December 1987 in Huangnizhuang catchment, Anhui Province, China. The differences of the two calculation results were analyzed and used to drive the block-wise use of the TOPMODEL with the Muskingum-Cunge routing (BTOPMC) model to test the effect on model performance. The results show that both annual and monthly PETs estimated by 10-day NDVI are lower than those estimated by monthly NDVI. Annual PET from the vegetation root zone (PETr) lowers 9.77%-13.64% and monthly PETr lowers 3.28%-17.44% in the whole basin. PET from the vegetation interception (PETi) shows the same trend as PETr. In addition, temporal resolution of NDVI has more effect on PETr in summer and on PETi in winter. The correlation between PETr as estimated by 10-day NDVI and pan measurement (R2= 0.835) is better than that between monthly NDVI and pan measurement (R2 = 0.775). The two potential evapotranspiration estimates were used to drive the BTOPMC model and calibrate parameters, and model performance was found to be similar. In summary, the effect of temporal resolution of NDVI on potential evapotranspiration estimation is significant, but trivial on hydrological model performance.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.41572306,41162010)Natural Science Foundation of Qinghai Province (Grant No.2014ZJ-906)+2 种基金Hundred Talents Program in Chinese Academy of Sciences (Grant No.Y110091025)Scientific and Technologic Support Plan of Qinghai Province (2015-SF-117)Ministry of Education 'Innovative Team Development Scheme' (IRT_17R62)
文摘This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability(RIC) of the herbs and shrubs was evaluated in rainfall interception experiment at the end of the third, fourth and fifth month of the growth period in 2007. The leaf transpiration rate and the effects of roots on promoting soil moisture evaporation in these plants were also assessed in transpiration experiment and root-soil composite system evaporation experiment in the five month's growth period. It is found that the RIC of the fourstudied herbs follows the order of E. repens, E. dahuricus, A. trachycaulum and L. secalinus; the RIC of the four shrubs follows the order of A. canescens, Z. xanthoxylon, C. korshinskii and N. tangutorum. The RIC of all the herbs is related linearly to their mean height and canopy area(R^2 ≥ 0.9160). The RIC of all the shrubs bears a logarithmic relationship with their mean height(R^2 ≥ 0.9164), but a linear one with their canopy area(R^2 ≥ 0.9356). Moreover, different species show different transpiration rates. Of the four herbs, E. repens has the highest transpiration rate of 1.07 mg/(m^2·s), and of the four shrubs, A. canescens has the highest transpiration rate(0.74 mg/(m^2·s)). The roots of all the herbs and shrubs can promote soil moisture evaporation. Of the four herbs, the evaporation rate of E. repens root-soil composite system is the highest(2.14%), and of the four shrubs,the root-soil composite system of A. canescens has the highest evaporation rate(1.41%). The evaporation rate of the root-soil composite system of E. dahuricus and Z. xanthoxylon bears a second-power linear relationship with evaporation time(R^2 ≥ 0.9924). The moisture content of all the eight root-soil composite systems decreases exponentially with evaporation time(R^2 ≥ 0.8434). The evaporation rate and moisture content of all the plants' root-soil composite systems increases logarithmically(R^2 ≥ 0.9606) and linearly(R^2 ≥ 0.9777) with root volume density. The findings of this study indicate that among the four herbs and four shrubs, E. repens and A. canescens possess the most effective hydrological effects in reducing the soil erosion and shallow landslide in this region.
文摘Predicting evaporation rate is one of important elements for hydrology planning. There are several methods to estimate evaporation from a water surface. The objective of this study was to test the capability of artificial neural networks (ANNs) to predict evaporation using 10 years data set (1999 to 2008) from Ahvaz meteorological station and has been compared with values obtained using pan evaporation. Software Qnet 2000 has been utilized to model the evaporation. The Qnet 2000 was trained with monthly climate data (Solar radiation, minimum and maximum temperature, minimum and maximum relative humidity, and wind velocity) as input. The model was approximately implemented 144 times that finally hyperbolic secant stimulant function of 4 input parameters including minimum temperature, maximum temperature, solar radiation and wind velocity and 6 nodes in hidden layer has been yielded the best outcome. Correlation coefficients (R2) in training and testing sections are to 97.4% and 97.3% respectively. Also maximum errors in training and testing sections equaled to 18% and 24% respectively. Results showed ANNs approach works well for the data set used in this region.
基金Under the auspices of Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (No. IWHR-SKL-201111)National Natural Science Foundation of China (No. 41101024)
文摘The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial information (STMB) versus refined spatial information map (RSIM)) of soil physical properties, including field capacity, soil porosity and saturated hydraulic conductivity are used respectively as input data for Water Flow Model for Lake Catchment (WATLAC) to determine their effectiveness in simulating hydrological processes and to expound the effects on model performance in terms of estimating groundwater recharge, soil evaporation, runoff generation as well as partitioning of surface and subsurface water flow. The results show that: 1) the simulated stream flow hydrographs based on the STMB and RSIM soil data reproduce the observed hydrographs well. There is no significant increase in model accuracy as more precise soil physical properties information being used, but WATLAC model using the RSIM soil data could predict more runoff volume and reduce the relative runoff depth errors; 2) the groundwater recharges have a consistent trend for both cases, while the STMB soil data tend to produce higher groundwater recharges than the RSIM soil data. In addition, the spatial distribution of annual groundwater recharge is significantly affected by the spatial distribution of soil physical properties; 3) the soil evaporation simulated using the STMB and RSIM soil data are similar to each other, and the spatial distribution patterns are also insensitive to the spatial information of soil physical properties; and 4) although the different spatial information of soil physical properties does not cause apparent difference in overall stream flow, the partitioning of surface and subsurface water flow is distinct. The implications of this study are that the refined spatial information of soil physical properties does not necessarily contribute to a more accurate prediction of stream flow, and the selection of appropriate soil physical property data needs to consider the scale of watersheds and the level of accuracy required.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600203)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC012)the National Natural Science Foundation of China (Grant No. 41575096)
文摘Hydraulic redistribution(HR)refers to the process of soil water transport through the low-resistance pathway provided by plant roots.It has been observed in field studies and proposed to be one of the processes that enable plants to resist water limitations.However,most land-surface models(LSMs)currently do not include this underground root process.In this study,a HR scheme was incorporated into the Community Land Model version 4.5(CLM4.5)to investigate the effect of HR on the eco-hydrological cycle.Two paired numerical simulations(with and without the new HR scheme)were conducted for the Tapajos National Forest km83(BRSa3)site and the Amazon.Simulations for the BRSa3 site in the Amazon showed that HR during the wet season was small,<0.1 mm day^(–1),transferring water from shallow wet layers to deep dry layers at night;however,HR in the dry season was more obvious,up to 0.3 mm day^(–1),transferring water from deep wet layers to shallow dry layers at night.By incorporating HR into CLM4.5,the new model increased gross primary production(GPP)and evapotranspiration(ET)by 10%and 15%,respectively,at the BRSa3 site,partly overcoming the underestimation.For the Amazon,regional analysis also revealed that vegetation responses(including GPP and ET)to seasonal drought and the severe drought of 2005 were better captured with the HR scheme incorporated.
基金supported by the Doctoral Program of China’s Higher Education Research Fund(Grant No.20110211110011)the National Natural Science Foundation of China(Grant Nos.41001014,41240002,51209119)
文摘In a case study in Tao River Basin, China, we derived a high spatial-resolution regional distribution of evapotranspiration(ET) using the single crop coefficient method and Budyko equation. We then further analyzed the spatio-temporal characteristics of this diverse eco-hydrological basin from 2001–2010. The results suggest that the single crop coefficient method based on leaf area index captures better spatial and temporal dynamics of the regional ET than did the Budyko Equation method. The rising temperature was the main reason for the increasing ET in the Tao River Basin during 2001–2010. Areas with high ET efficiency were distributed mainly in the areas where the vegetation coverage was high, and a lower runoff coefficient responded. The estimated spatial patterns of ET allowed an improved understanding of the eco-hydrological processes within the Tao River Basin and the method used might be generalized as a reference for future regional-scale eco-hydrological research.