Vapreotide acetate (Vap) was used as a biotemplate to synthesize silver nanocages through direct co-incubation of a AgNO3 solution, following by reduction using fresh NaBH4. The characterized vapreotide-templated si...Vapreotide acetate (Vap) was used as a biotemplate to synthesize silver nanocages through direct co-incubation of a AgNO3 solution, following by reduction using fresh NaBH4. The characterized vapreotide-templated silver nanocages (Vap-AgNCs) presented a wide and red shifted absorption band with a maximum between 480 nm and 800 nm and possessed a uniform structure with a face-centered cubic crystal structure. The biocompatibiliW of Vap-AgNCs was assessed using the MTT method, indicating Vap-AgNCs had better biocompatibility when its concentration was lower than 2,5 × 10-4 mmol. L- 1. The photothermal characteristics of Vap-AgNCs were analyzed with laser irradiation (808 nm, 1,5 W, cm-2) and the results showed that the temperature of the Vap- AgNCs solution reached 45 ℃ starting from 25 ℃ within 5 min. Additionally, Vap-AgNCs with a laser led to HeLa cell death. Therefore, the prepared Vap-AgNCs is expected to be an effective photothermal therapy agent.展开更多
We analyze thickness-stretch vibrations of a plate of hexagonal crystal carrying an array of micro-rods with their bottoms fixed to the top surface of the plate.The rods undergo longitudinal vibrations when the crysta...We analyze thickness-stretch vibrations of a plate of hexagonal crystal carrying an array of micro-rods with their bottoms fixed to the top surface of the plate.The rods undergo longitudinal vibrations when the crystal plate is in thickness-stretch motion.The plate is modeled by the theory of anisotropic elasticity.The rods are modeled by the one-dimensional structural theory for extensional vibration of rods.A frequency equation is obtained and solved using perturbation method.The effect of the rod array on the resonant frequencies of the crystal plate is examined.The results are potentially useful for using thickness-stretch modes of crystal plates to measure the mechanical properties of microrod arrays.展开更多
基金Supported by the National Natural Science Foundation of China(21476190)Hebei Province Key Basic Research Fund(15961301D)
文摘Vapreotide acetate (Vap) was used as a biotemplate to synthesize silver nanocages through direct co-incubation of a AgNO3 solution, following by reduction using fresh NaBH4. The characterized vapreotide-templated silver nanocages (Vap-AgNCs) presented a wide and red shifted absorption band with a maximum between 480 nm and 800 nm and possessed a uniform structure with a face-centered cubic crystal structure. The biocompatibiliW of Vap-AgNCs was assessed using the MTT method, indicating Vap-AgNCs had better biocompatibility when its concentration was lower than 2,5 × 10-4 mmol. L- 1. The photothermal characteristics of Vap-AgNCs were analyzed with laser irradiation (808 nm, 1,5 W, cm-2) and the results showed that the temperature of the Vap- AgNCs solution reached 45 ℃ starting from 25 ℃ within 5 min. Additionally, Vap-AgNCs with a laser led to HeLa cell death. Therefore, the prepared Vap-AgNCs is expected to be an effective photothermal therapy agent.
基金supported by the National Natural Science Foundation of China (Grant No. 10932004)the Industrial Technology Research Program of the City of Ningbo (Grant No. 2007B10052)the WONG K C Magna Fund of Ningbo University
文摘We analyze thickness-stretch vibrations of a plate of hexagonal crystal carrying an array of micro-rods with their bottoms fixed to the top surface of the plate.The rods undergo longitudinal vibrations when the crystal plate is in thickness-stretch motion.The plate is modeled by the theory of anisotropic elasticity.The rods are modeled by the one-dimensional structural theory for extensional vibration of rods.A frequency equation is obtained and solved using perturbation method.The effect of the rod array on the resonant frequencies of the crystal plate is examined.The results are potentially useful for using thickness-stretch modes of crystal plates to measure the mechanical properties of microrod arrays.