Flower-like NaY(MoO4)2 particles were synthesized through a microwave-assisted hydrother- mal process followed by a subsequent calcination process. The products were characterized by X-ray diffraction, X-ray photoel...Flower-like NaY(MoO4)2 particles were synthesized through a microwave-assisted hydrother- mal process followed by a subsequent calcination process. The products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron mi- croscopy. The possible formation mechanism of the flower-like NaY(MoO4)2 precursor was proposed. The NaY(MoO4)2:Eu3+ phosphors were also prepared and their luminescence properties showed the NaY(MoO4)2:Eu^3+ materials with the emission peak at 612 nm had potential application as a red phosphor for white light-emitting diodes. Furthermore, the microwave-assisted hydrothermal process followed by a subsequent calcination process could be extended to prepare the other lanthanide molybdates with the flower-like morphology.展开更多
The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration product...The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.展开更多
Computational fluid dynamics (CFD) combined with detailed chemical kinetics was employed to model the filtration combustion of a mixture of methane/air in a packed bed of uniform 3 mm diameter alumina spherical part...Computational fluid dynamics (CFD) combined with detailed chemical kinetics was employed to model the filtration combustion of a mixture of methane/air in a packed bed of uniform 3 mm diameter alumina spherical particles. The standard k-ε turbulence model and a methane oxidation mechanism with 23 species and 39 elemental reactions were used. Various equivalence ratios (1.47, 1.88, 2.12 and 2.35) were studied. The numerical results showed good agreement with the experimental data. For ultra-rich mixtures, the combustion temperature exceeds the adiabatic value by hundreds of centigrade degrees. Syngas (hydrogen and carbon monoxide) can be obtained up to a mole fraction of 23%. The numerical results also showed that the combination of CFD with detailed chemical kinetics gives good performance for modeling the pseudo-homogeneous flames of methane in porous media.展开更多
Characteristics of interaction between di-2-ethylhexyl phthalate(DEHP) and particulate in a eutrophic lake were studied in this paper. DEHP concentrations ranged from 89.9 to 247 μg/L with an average value of 146 μg...Characteristics of interaction between di-2-ethylhexyl phthalate(DEHP) and particulate in a eutrophic lake were studied in this paper. DEHP concentrations ranged from 89.9 to 247 μg/L with an average value of 146 μg/L in subsurface water (SSW) samples, and from 82.0 to 390 μg/L with an average value of 211 μg/L in water surface microlayer (SM) samples. The results indicate that there was only a weak correlation between the DEHP concentrations and suspended particulate material(SPM) concentrations in both SSW and SM, while the significant correlation between DEHP concentrations and chlorophyll a concentrations was found, which suggestes that DEHP was principally bound to phytoplankton in the eutrophic lake. Correlation between DEHP concentrations and total phosphor (TP) concentrations was also found in this investigation.Enrichment factors (EF) of DEHP in SM were in the range of 0.85 to 2.12 with an average value of 1.35. DEHP EFs were significantly related to the enrichment of chlorophyll a in SM. The results suggest that the enrichment of DEHP in SM of this eutrophic lake was mainly due to DEHP accumulation in phytoplankton and was controlled by distribution of phytoplankton between SM and SSW.展开更多
In this paper, we adopted simulation method to discuss influences of litter layer on plants habitat in grassland. Results indicated that ground surface evaporation, soil moisture, surface temperature, soil pH, soil bu...In this paper, we adopted simulation method to discuss influences of litter layer on plants habitat in grassland. Results indicated that ground surface evaporation, soil moisture, surface temperature, soil pH, soil bulk density and soil porosity were all strongly related to the litter quantity. Potassium (K) and organic materials in the soil covered by litter layer were higher than those in the soil uncovered by litter layer. With 100 g.ln-z increase of litter, the percentage of organic materials increased by 17.9%, nitrogen (N) increased by 7.6%, phosphor (P) increased by 26.4%, and K increased by 3.8%. With the litter accumulation amounting up to 600 g-m-2, the percentage of organic materials increased by 1.8 times, N increased by 81.5%, P increased by 1.8 times and K increased by 26.4%. According to the expected coefficient method of optimization, a mathematical model was established about the optimal accumulation quantity of litter.展开更多
Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mec...Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.展开更多
High performance metakaolinite based cementitious materials were prepared with metakaolinite as main component, and the different modules of Na and Na-K silicate solutions as diagenetic agent. The results show that th...High performance metakaolinite based cementitious materials were prepared with metakaolinite as main component, and the different modules of Na and Na-K silicate solutions as diagenetic agent. The results show that the mechanical properties are affected by different silicate solutions, compressive strengths of pastes hydrated for 3 d and 28 d with Na-K silicate solution (The modulus is 1) are about 43.68 and 78.52 MPa respectively. By analyzing the mechanical properties of Metakaolinite based cementitious materials, the diagenetic effect of lower module is better than higher module, and Na-K silicate solution is better than Na silicate solution. The structure of the Na and Na-K silicate solutions is studied with IR and 29Si NMR, the reason of the lower module and Na-K silicate solution improving the mechanical properties is that the low module silicate solution has lower polymeric degree of silicon dioxide, and the higher polymeric degree of silicon oxide tetrahedron(Q^4) in Na-K silicate solution is less than Na silicate solution.展开更多
The excessive moisture has an adverse effect on the building materials structure. Most standard construction materials are characterized by porous structure, resulting in the ability to absorb water in liquid and gase...The excessive moisture has an adverse effect on the building materials structure. Most standard construction materials are characterized by porous structure, resulting in the ability to absorb water in liquid and gaseous phases in the inner pores. Under certain conditions, water fills the pores within the structure of building material and then moves back to its surrounding. Many technical studies have shown that monitoring the moisture transport is mainly based on experimental methods. This work is based on models of transport of moisture in building physics, i.e., the description of the moisture behaviour of building materials based on physical laws models (KRISCHER, KIESSL). The aim of this work is to obtain the parameters of distribution of moisture for calculation capillary conductivity coefficient for practical using by means of non-destructive method. The authors have now developed all the software required to perform a boundary element analysis of problems in potential flow. The examples which the authors can analyse will, however, be restricted to homogenous domains.展开更多
This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were an...This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials.These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene).The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP.Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain.Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1000 m, 1500 m, and 2 000 m using various mooring materials.The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM.Fresh attempts were then made to comparatively evaluate the mooring system's characteristics and global performance.Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations.The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.展开更多
Several kinds of activated carbon fibers, using sisal fiber as precursors, were prepared with steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. The antibacterial activities of th...Several kinds of activated carbon fibers, using sisal fiber as precursors, were prepared with steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. The antibacterial activities of these activated carbon fibers were determined and compared. The research results showed that these sisal based activated carbon fibers supporting zinc have stronger antibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related to the precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silver supported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.展开更多
Porous biomaterials are widely used as bone replacement materials because of thers high biocompatibility and osteoconductivity property. Understanding of their porous structure (i.e. geometrical and topological charac...Porous biomaterials are widely used as bone replacement materials because of thers high biocompatibility and osteoconductivity property. Understanding of their porous structure (i.e. geometrical and topological characteristic) and studying how to the body fluid flow through them are essential to investigate the degradation behaviour at the surface-liquid interface. This research develops a numerical model to simulate the porous structure of biomaterials based on the stochastic approach in pore size distribution and interconnectivity.展开更多
In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing pr...In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing promote rapid application of this innovative technique in the construction field with advantages of cost effective, high efficiency, design flexibility and environmental friendly. This paper firstly reviews existing 3 D printing techniques that are currently being used in commercial3 D printers. It then summarizes three latest development of largescale 3 D printing systems and identifies their relationships and limiting factors. Thereafter, critical factors that are used to evaluate the workability and printable performance of cementitious materials are specified. Easy-extrusive, easy-flowing, well-buildable, and proper setting time are significant for cementitious material to meet the critical requirements of a freeform construction process. Finally, main advantages, potential applications and the prospects of future research of 3 D printing in construction technology are suggested. The objective of this work is to review current design methodologies and operational constraints of largescale 3 D printing system and provide references for optimizing the performance of cementitious material and promote its responsible use with largescale 3 D printing technology.展开更多
Surface passivation with organic materials is one of the most effective and popular strategies to improve the stability and efficiency of perovskite solar cells(PSCs). However, the secondary bonding formed between org...Surface passivation with organic materials is one of the most effective and popular strategies to improve the stability and efficiency of perovskite solar cells(PSCs). However, the secondary bonding formed between organic molecules and perovskite layers is still not strong enough to protect the perovskite absorber from degradation initialized by oxygen and water attacking at defects. Recently, passivation with inorganic materials has gradually been favored by researchers due to the effectiveness of chemical and mechanical passivation. Lead-containing substances, alkali metal halides, transition elements, oxides,hydrophobic substances, etc. have already been applied to the surface and interfacial passivation of PSCs.These inorganic substances mainly manipulate the nucleation and crystallization process of perovskite absorbers by chemically passivating defects along grain boundaries and surface or forming a mechanically protective layer simultaneously to prevent the penetration of moisture and oxygen, thereby improving the stability and efficiency of the PSCs. Herein, we mainly summarize inorganic passivating materials and their individual passivation principles and methods. Finally, this review offers a personal perspective for future research trends in the development of passivation strategies through inorganic materials.展开更多
Crystal packing has strong influence on the charge mobility for organic semiconductors, so the elucidation of the structure-property relationship is important for the design of high-performance organic semiconductors....Crystal packing has strong influence on the charge mobility for organic semiconductors, so the elucidation of the structure-property relationship is important for the design of high-performance organic semiconductors. Halogen substitution has been shown to be a promising strategy to alter the crystal structure without significantly changing the molecular size in previous reports. This paper studies the influence of halogenation on charge transport in single crystals of chrysene derivatives from a theoretical standpoint. The structure-property relationship is first rationalized by investigating the reorganization energy and electronic coupling from the density functional theory calculations. Based on the Marcus charge transfer theory, the mobilities in the molecular monolayer are then calculated with the random walk simulation technique from which the angular resolution anisotropic mobilities are obtained on the fly. It is shown that the mobilities become much larger for holes than those for electrons in the molecular monolayer when the halogenation occurs. Furthermore, the intra-layer charge transport is little influenced by the inter-layer pathways in the single crystals of the halogenated chrysene derivatives, while the opposite case is shown for the crystal of the nonhalogenated chrysene derivative. The reason for the variations of charge transport is discussed theoretically.展开更多
X-ray computer tomography(CT)has been intensively applied to the research of cement-based materials,while most of the CT applications are qualitative.To have more quantitative applications,the arbitrary grayscale valu...X-ray computer tomography(CT)has been intensively applied to the research of cement-based materials,while most of the CT applications are qualitative.To have more quantitative applications,the arbitrary grayscale values and the specially defined CT numbers of the main cement constituents,including the cement clinkers,the hydrated products,and some durability products are calibrated on an industrial CT system in this study.The calibration results can deepen our understandings of the X-ray CT image of the cement-based materials.The universalities of the calibrated results and the calibration procedures are clarified.The potential applications are anticipated,such as segmentation of the individual phases,quantitative durability research,porosity determinations,and quantitative composition characterizations.展开更多
文摘Flower-like NaY(MoO4)2 particles were synthesized through a microwave-assisted hydrother- mal process followed by a subsequent calcination process. The products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron mi- croscopy. The possible formation mechanism of the flower-like NaY(MoO4)2 precursor was proposed. The NaY(MoO4)2:Eu3+ phosphors were also prepared and their luminescence properties showed the NaY(MoO4)2:Eu^3+ materials with the emission peak at 612 nm had potential application as a red phosphor for white light-emitting diodes. Furthermore, the microwave-assisted hydrothermal process followed by a subsequent calcination process could be extended to prepare the other lanthanide molybdates with the flower-like morphology.
基金Project(51208391) supported by the National Natural Science Foundation of China
文摘The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.
基金Supported by the National Natural Science Foundation of China (20307007, 50576081) and the Natural Science Foundation of Zhejiang Province (R 107532), Program for New Century Excellent Talents in University (NCET-07-0761) and a Foundation for the Author of National Excellent Doctoral Dissertation of China (200747).
文摘Computational fluid dynamics (CFD) combined with detailed chemical kinetics was employed to model the filtration combustion of a mixture of methane/air in a packed bed of uniform 3 mm diameter alumina spherical particles. The standard k-ε turbulence model and a methane oxidation mechanism with 23 species and 39 elemental reactions were used. Various equivalence ratios (1.47, 1.88, 2.12 and 2.35) were studied. The numerical results showed good agreement with the experimental data. For ultra-rich mixtures, the combustion temperature exceeds the adiabatic value by hundreds of centigrade degrees. Syngas (hydrogen and carbon monoxide) can be obtained up to a mole fraction of 23%. The numerical results also showed that the combination of CFD with detailed chemical kinetics gives good performance for modeling the pseudo-homogeneous flames of methane in porous media.
文摘Characteristics of interaction between di-2-ethylhexyl phthalate(DEHP) and particulate in a eutrophic lake were studied in this paper. DEHP concentrations ranged from 89.9 to 247 μg/L with an average value of 146 μg/L in subsurface water (SSW) samples, and from 82.0 to 390 μg/L with an average value of 211 μg/L in water surface microlayer (SM) samples. The results indicate that there was only a weak correlation between the DEHP concentrations and suspended particulate material(SPM) concentrations in both SSW and SM, while the significant correlation between DEHP concentrations and chlorophyll a concentrations was found, which suggestes that DEHP was principally bound to phytoplankton in the eutrophic lake. Correlation between DEHP concentrations and total phosphor (TP) concentrations was also found in this investigation.Enrichment factors (EF) of DEHP in SM were in the range of 0.85 to 2.12 with an average value of 1.35. DEHP EFs were significantly related to the enrichment of chlorophyll a in SM. The results suggest that the enrichment of DEHP in SM of this eutrophic lake was mainly due to DEHP accumulation in phytoplankton and was controlled by distribution of phytoplankton between SM and SSW.
基金Acknowledgements: This research work was supported by the National Natural Science Foundation of China (No. 30590382 and No. 30570273) and Science Foundation for Young Teachers of Northeast Normal University (No. 20070502).
文摘In this paper, we adopted simulation method to discuss influences of litter layer on plants habitat in grassland. Results indicated that ground surface evaporation, soil moisture, surface temperature, soil pH, soil bulk density and soil porosity were all strongly related to the litter quantity. Potassium (K) and organic materials in the soil covered by litter layer were higher than those in the soil uncovered by litter layer. With 100 g.ln-z increase of litter, the percentage of organic materials increased by 17.9%, nitrogen (N) increased by 7.6%, phosphor (P) increased by 26.4%, and K increased by 3.8%. With the litter accumulation amounting up to 600 g-m-2, the percentage of organic materials increased by 1.8 times, N increased by 81.5%, P increased by 1.8 times and K increased by 26.4%. According to the expected coefficient method of optimization, a mathematical model was established about the optimal accumulation quantity of litter.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y405496) the State Key Development Program for Basic Research of China (2007CB216409)
文摘Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.
基金Supported by the National 863 Plan Project of China(2003AA332020)National Natural Science Foundation of China(50474002)Key Project of Ministry of Education of China(104231)
文摘High performance metakaolinite based cementitious materials were prepared with metakaolinite as main component, and the different modules of Na and Na-K silicate solutions as diagenetic agent. The results show that the mechanical properties are affected by different silicate solutions, compressive strengths of pastes hydrated for 3 d and 28 d with Na-K silicate solution (The modulus is 1) are about 43.68 and 78.52 MPa respectively. By analyzing the mechanical properties of Metakaolinite based cementitious materials, the diagenetic effect of lower module is better than higher module, and Na-K silicate solution is better than Na silicate solution. The structure of the Na and Na-K silicate solutions is studied with IR and 29Si NMR, the reason of the lower module and Na-K silicate solution improving the mechanical properties is that the low module silicate solution has lower polymeric degree of silicon dioxide, and the higher polymeric degree of silicon oxide tetrahedron(Q^4) in Na-K silicate solution is less than Na silicate solution.
文摘The excessive moisture has an adverse effect on the building materials structure. Most standard construction materials are characterized by porous structure, resulting in the ability to absorb water in liquid and gaseous phases in the inner pores. Under certain conditions, water fills the pores within the structure of building material and then moves back to its surrounding. Many technical studies have shown that monitoring the moisture transport is mainly based on experimental methods. This work is based on models of transport of moisture in building physics, i.e., the description of the moisture behaviour of building materials based on physical laws models (KRISCHER, KIESSL). The aim of this work is to obtain the parameters of distribution of moisture for calculation capillary conductivity coefficient for practical using by means of non-destructive method. The authors have now developed all the software required to perform a boundary element analysis of problems in potential flow. The examples which the authors can analyse will, however, be restricted to homogenous domains.
基金Supported by China National 111 Project under Grant No.B07019
文摘This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials.These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene).The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP.Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain.Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1000 m, 1500 m, and 2 000 m using various mooring materials.The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM.Fresh attempts were then made to comparatively evaluate the mooring system's characteristics and global performance.Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations.The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.
基金Key-program foundation from Guangzhou Science & Technology Committee (1999-J-013-01)
文摘Several kinds of activated carbon fibers, using sisal fiber as precursors, were prepared with steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. The antibacterial activities of these activated carbon fibers were determined and compared. The research results showed that these sisal based activated carbon fibers supporting zinc have stronger antibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related to the precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silver supported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.
基金Funded by"973" project which serial number is G19990 6 4 70 1
文摘Porous biomaterials are widely used as bone replacement materials because of thers high biocompatibility and osteoconductivity property. Understanding of their porous structure (i.e. geometrical and topological characteristic) and studying how to the body fluid flow through them are essential to investigate the degradation behaviour at the surface-liquid interface. This research develops a numerical model to simulate the porous structure of biomaterials based on the stochastic approach in pore size distribution and interconnectivity.
基金supported by the National Major Research Instrument Development Project of the National Natural Science Foundation of China(51627812)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology,KFJJ13-11M)
文摘In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing promote rapid application of this innovative technique in the construction field with advantages of cost effective, high efficiency, design flexibility and environmental friendly. This paper firstly reviews existing 3 D printing techniques that are currently being used in commercial3 D printers. It then summarizes three latest development of largescale 3 D printing systems and identifies their relationships and limiting factors. Thereafter, critical factors that are used to evaluate the workability and printable performance of cementitious materials are specified. Easy-extrusive, easy-flowing, well-buildable, and proper setting time are significant for cementitious material to meet the critical requirements of a freeform construction process. Finally, main advantages, potential applications and the prospects of future research of 3 D printing in construction technology are suggested. The objective of this work is to review current design methodologies and operational constraints of largescale 3 D printing system and provide references for optimizing the performance of cementitious material and promote its responsible use with largescale 3 D printing technology.
基金financially supported by the Natural Science Foundation of China (61874167 and 61674084)the National Key R&D Program of China (2018YFB1500105)+5 种基金the Fundamental Research Funds for Central Universitiesthe Natural Science Foundation of Tianjin City (17JCYBJC41400)the Open Fund of the Key Laboratory of Optical Information Science & Technology of Ministry of Education of China (2017KFKT014)the 111 Project (B16027)the International Cooperation Base (2016D01025)Tianjin International Joint Research and Development Center。
文摘Surface passivation with organic materials is one of the most effective and popular strategies to improve the stability and efficiency of perovskite solar cells(PSCs). However, the secondary bonding formed between organic molecules and perovskite layers is still not strong enough to protect the perovskite absorber from degradation initialized by oxygen and water attacking at defects. Recently, passivation with inorganic materials has gradually been favored by researchers due to the effectiveness of chemical and mechanical passivation. Lead-containing substances, alkali metal halides, transition elements, oxides,hydrophobic substances, etc. have already been applied to the surface and interfacial passivation of PSCs.These inorganic substances mainly manipulate the nucleation and crystallization process of perovskite absorbers by chemically passivating defects along grain boundaries and surface or forming a mechanically protective layer simultaneously to prevent the penetration of moisture and oxygen, thereby improving the stability and efficiency of the PSCs. Herein, we mainly summarize inorganic passivating materials and their individual passivation principles and methods. Finally, this review offers a personal perspective for future research trends in the development of passivation strategies through inorganic materials.
基金financially supported by the Major State Basic Research Development Programs of China (2011CBA00701)the National Natural Science Foundation of China (21003030 and 20973049)+1 种基金the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HC201117)and the China Postdoctoral Science Foundation (20110490102)
文摘Crystal packing has strong influence on the charge mobility for organic semiconductors, so the elucidation of the structure-property relationship is important for the design of high-performance organic semiconductors. Halogen substitution has been shown to be a promising strategy to alter the crystal structure without significantly changing the molecular size in previous reports. This paper studies the influence of halogenation on charge transport in single crystals of chrysene derivatives from a theoretical standpoint. The structure-property relationship is first rationalized by investigating the reorganization energy and electronic coupling from the density functional theory calculations. Based on the Marcus charge transfer theory, the mobilities in the molecular monolayer are then calculated with the random walk simulation technique from which the angular resolution anisotropic mobilities are obtained on the fly. It is shown that the mobilities become much larger for holes than those for electrons in the molecular monolayer when the halogenation occurs. Furthermore, the intra-layer charge transport is little influenced by the inter-layer pathways in the single crystals of the halogenated chrysene derivatives, while the opposite case is shown for the crystal of the nonhalogenated chrysene derivative. The reason for the variations of charge transport is discussed theoretically.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2242014R30014)State Key Laboratory of High Performance Civil Engineering Materials of China(Grant No.2012CEM008)
文摘X-ray computer tomography(CT)has been intensively applied to the research of cement-based materials,while most of the CT applications are qualitative.To have more quantitative applications,the arbitrary grayscale values and the specially defined CT numbers of the main cement constituents,including the cement clinkers,the hydrated products,and some durability products are calibrated on an industrial CT system in this study.The calibration results can deepen our understandings of the X-ray CT image of the cement-based materials.The universalities of the calibrated results and the calibration procedures are clarified.The potential applications are anticipated,such as segmentation of the individual phases,quantitative durability research,porosity determinations,and quantitative composition characterizations.