期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进DenseNet的水果小目标检测 被引量:15
1
作者 徐利锋 黄海帆 +1 位作者 丁维龙 范玉雷 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第2期377-385,共9页
针对自然环境中小目标水果的检测精度普遍较低的问题,提出基于DenseNet改进的水果目标检测框架.构建以DenseNet为核心的多尺度特征提取模块,在DenseNet不同层级的稠密块中建立特征金字塔结构,加强网络层特征复用.结合低层特征的高分辨... 针对自然环境中小目标水果的检测精度普遍较低的问题,提出基于DenseNet改进的水果目标检测框架.构建以DenseNet为核心的多尺度特征提取模块,在DenseNet不同层级的稠密块中建立特征金字塔结构,加强网络层特征复用.结合低层特征的高分辨率和高层特征的高语义性,实现准确定位和预测小目标水果存在的目的.引入软阈值非极大值抑制(Soft-NMS)算法,改善簇状果实结构中检测框被误剔除的情况.与常用的Faster R-CNN网络相比,所提出的框架在苹果、芒果和杏3个数据集中的平均检测速度大于40 FPS,F1值分别为0.920、0.928、0.831,实现了检测效率及精度的提升. 展开更多
关键词 DenseNet 深度学习 水果小目标检测 特征金字塔网络(FPN) 软阈值非极大值抑制(Soft-NMS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部