Mercury sphygmomanometer (MSM) is reliable and widely used in clinics and hospitals. The principle of Korotkoff sounds method (KSM) applied in the MSM is also a gold standard to measure blood pressure. Many efforts ha...Mercury sphygmomanometer (MSM) is reliable and widely used in clinics and hospitals. The principle of Korotkoff sounds method (KSM) applied in the MSM is also a gold standard to measure blood pressure. Many efforts have been made attempting to replace MSM, which is criticized for being not healthy and safe. In this research, an electronic blood pressure monitor, named K-sounds electronic sphygmomanometer (KESM), was designed as a substitute to MSM. The three key elements of KSM were proposed for the first time. We used appropriate electronic components to build the KESM which can fulfill the functions related to the three key elements. The KESM, which was easy to operate and free of mercury, followed the same principle as MSM. The same principle guaranteed the comparable accuracy. We took equivalence test and the results showed that the designed KESM was as accurate as the calibrated standard MSM. The designed KESM passed the certifications of SFDA and is qualified in clinics or hospitals for diagnostic purposes.展开更多
This paper presents a case study that demonstrates how models can be used to support water management decisions before sufficient data to verify the model are available. In developing areas, and for new reservoirs, ex...This paper presents a case study that demonstrates how models can be used to support water management decisions before sufficient data to verify the model are available. In developing areas, and for new reservoirs, extensive data for model calibration and validation are often not available. As a case study we developed a CE-QUAL-W2 model of Aguamilpa Reservoir using minimal data and used the model to create a data acquisition plan to support early planning decisions. We based the model on a two-year period and compared the model results to data recently collected with our acquisition plan. We present how we developed and used the model to design the data acquisition plan which identifies and collects data to update and calibrate the model to support future decisions. We show that a minimally calibrated model based on scarce data can support management decisions and be the first step in a spiral engineering approach to system management. Spiral engineering uses models and data to both support early decisions and to iteratively improve this information to support subsequent decisions and models. This case study can be used as a guide for developing water quality models with minimal data and uses the models to support early decision requirements.展开更多
A three dimensional hydrodynamic was developed for the Dubai coastal zone including the Dubai Creek. The model is based on DHI (Danish Hydraulic Institute's) MIKE 3 HD (FM) modeling software. The model was subjec...A three dimensional hydrodynamic was developed for the Dubai coastal zone including the Dubai Creek. The model is based on DHI (Danish Hydraulic Institute's) MIKE 3 HD (FM) modeling software. The model was subjected to extensive calibration making use of recorded water levels, currents, water temperature and salinity. A high level of accuracy in calibration was achieved as indicated by the computed statistical error parameters at all recording stations. The model results combined with field recording of water levels were used to ascertain tidal wave propagation pattern in the Dubai coastal zone and in and out of the Dubai creek. This model will be a very useful tool in assessing impacts of planned connection of artificial waterways to the Dubai Creek.展开更多
基金Supported by the Innovation Fund Project from Ministry of Science and Technology of China (08C26214401239)
文摘Mercury sphygmomanometer (MSM) is reliable and widely used in clinics and hospitals. The principle of Korotkoff sounds method (KSM) applied in the MSM is also a gold standard to measure blood pressure. Many efforts have been made attempting to replace MSM, which is criticized for being not healthy and safe. In this research, an electronic blood pressure monitor, named K-sounds electronic sphygmomanometer (KESM), was designed as a substitute to MSM. The three key elements of KSM were proposed for the first time. We used appropriate electronic components to build the KESM which can fulfill the functions related to the three key elements. The KESM, which was easy to operate and free of mercury, followed the same principle as MSM. The same principle guaranteed the comparable accuracy. We took equivalence test and the results showed that the designed KESM was as accurate as the calibrated standard MSM. The designed KESM passed the certifications of SFDA and is qualified in clinics or hospitals for diagnostic purposes.
文摘This paper presents a case study that demonstrates how models can be used to support water management decisions before sufficient data to verify the model are available. In developing areas, and for new reservoirs, extensive data for model calibration and validation are often not available. As a case study we developed a CE-QUAL-W2 model of Aguamilpa Reservoir using minimal data and used the model to create a data acquisition plan to support early planning decisions. We based the model on a two-year period and compared the model results to data recently collected with our acquisition plan. We present how we developed and used the model to design the data acquisition plan which identifies and collects data to update and calibrate the model to support future decisions. We show that a minimally calibrated model based on scarce data can support management decisions and be the first step in a spiral engineering approach to system management. Spiral engineering uses models and data to both support early decisions and to iteratively improve this information to support subsequent decisions and models. This case study can be used as a guide for developing water quality models with minimal data and uses the models to support early decision requirements.
文摘A three dimensional hydrodynamic was developed for the Dubai coastal zone including the Dubai Creek. The model is based on DHI (Danish Hydraulic Institute's) MIKE 3 HD (FM) modeling software. The model was subjected to extensive calibration making use of recorded water levels, currents, water temperature and salinity. A high level of accuracy in calibration was achieved as indicated by the computed statistical error parameters at all recording stations. The model results combined with field recording of water levels were used to ascertain tidal wave propagation pattern in the Dubai coastal zone and in and out of the Dubai creek. This model will be a very useful tool in assessing impacts of planned connection of artificial waterways to the Dubai Creek.