We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in t...We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of "Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and East zonal(Nm-Ez)" circulation groups and to the increasing contribution of "West zonal and Southern meridional(Wz-Sm)" circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of "West zonal(Wz)","Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and Southern meridional(Nm-Sm)" circulation groups. For the cold seasons,a substantialincrease of "Wz-Sm" and a decrease of "Nm-Sa","Nm-Ez" circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).展开更多
Using the data of conductivity-temperature-depth (CTD) intensive observations conducted during Oct-Nov. 2005, this study provides the first three-dimension quasi-synoptic description of the circulation in the wester...Using the data of conductivity-temperature-depth (CTD) intensive observations conducted during Oct-Nov. 2005, this study provides the first three-dimension quasi-synoptic description of the circulation in the western North Pacific. Several novel phenomena are revealed, especially in the deep ocean where earlier observations were very sparse. During the observations, the North Equatorial Current (NEC) splits at about 12°N near the sea surface. This bifurcation shifts northward with depth, reaching about 20°N at 1 000 m, and then remains nearly unchanged to as deep as 2 000 m. The Luzon Undercurrent (LUC), emerging below the Kuroshio from about 21°N, intensifies southward, with its upper boundary surfacing around 12°N. From there, part of the LUC separates from the coast, while the rest continues southward to join the Mindanao Current (MC). The MC extends to 2 000 m near the coast, and appears to be closely related to the subsurface cyclonic eddies which overlap low-salinity water from the North Pacific. The Mindanao Undercurrent (MUC), carrying waters from the South Pacific, shifts eastward upon approaching the Mindanao coast and eventually becomes part of the eastward undercurrent between 10°N and 12°N at 130°E. In the upper 2 000 dbar, the total westward transport across 130°E between 7.5°N and 18°N reaches 65.4 Sv (1 Sv = 10-6 m3s^-1), the northward transport across 18°N from Luzon coast to 130°E is up to 35.0 Sv, and the southward transport across 7.5°N from Mindanao coast to 130°E is 27.9 Sv.展开更多
Soil water is one of renewable water resources.Some properties of soil water concerning with its availability to plant are briefly described.An equation for estimating the amount of soil water resource is presented.Ba...Soil water is one of renewable water resources.Some properties of soil water concerning with its availability to plant are briefly described.An equation for estimating the amount of soil water resource is presented.Based on the evaporation demand of atmosphere,the evaluation coefficient for soil water resource is suggested.展开更多
The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar at...The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.展开更多
Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts...Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts etc. And it is especially remarkable in semi-humid and semi-arid region. In this paper, the impacts of climate change on the hydrological cycle were analyzed for the Hai River Basin, a semi-humid and semi-arid basin and also the water receiving area of the middle route of South-to-North Water Diversion project. Meanwhile it is the most vulnerable to climate change. Firstly, the linear regression and Mann-Kendall non-parametric test methods were used to analyze the change characteristics of the hydrological and meteorological elements for the period from 1960 to 2009. The results show a significant increase in temperature, while precipitation decreases slightly, and runoff decreases drastically over the past 50 years. Secondly, the applicability of SWAT (Soil and Water Assessment Tool) model based on the DEM (Digital Elevation Model), land use and soil type was verified in the basin. Results show the model performs well in this basin. Furthermore, the water balance model, Fu's theory and Koichiro's theory were used to calculate the actual evaporation, comparing to the simulated actual evaporation by SWAT model to validate the result for the lack of large-scale observed evaporation datasets. Possible reasons were also analyzed to explore the reasonable factor for the decline of the runoff. Finally the precipitation, temperature, runoff and evaporation response processes based on the IPCC AR4 multi-mode climate models and the verified SWAT model under different GHG emission scenarios (SRES-A2, AIB and B1) in the 21st century were discussed in three time periods: 2020s (2011-2040), 20S0s (2041-2070), 2080s (2071-2099). Results show that there are systematic positive trends for precipitation and temperature while the trends for runoff and evaporation will differ among sub-areas. The results will offer some references for adaptive water management in a changing environment, also including adaptation of a cross-basin water transfer project.展开更多
Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Bas...Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Based on the field study result, by using the simulation sol, ware, THERB, the effectiveness of the crawlspace warm air heating system has been examined. The effect of the factors, such as the wind amount circulating between crawlspace and indoor space, foundation insulation condition, and heat amount into the crawlspace, on the indoor thermal environment has been analyzed. Based on these analyses, the measured crawlspace heating system can make the average temperature of the living room above 20℃. These two houses have excellent thermal environment. According to the simulating result, heat amount input into crawlspace, which can make comfortable indoor thermal environment, for every month in heating period has been roughly concluded, and they are 600 W in December and March and 800 W in February and January, respectively.展开更多
Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configu...Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configurations, hindering use of a recuperator in Helium cycles and conditioning the outlet turbine temperature in CO2 ones. In both cycles, it is possible to take advantage of the exhaust thermal energy by coupling the Brayton to a Rankine cycle, with an organic fluid in the helium case (iso-butane has been investigated) and steam in the CO2 case. The highest efficiency achieved with Helium cycle is 38.5% using Organic Rankine Cycle and 32.6% with Helium alone. The efficiency changes from 46.7% using Rankine cycle to 41% with CO2 alone. The Helium cycle is highly sensitive to turbine efficiency and in a moderate way to compressor efficiency and pressure drops, being nearly insensitive to thermal effectiveness in heat exchangers. On the other hand, CO2 is nearly insensitive to all the parameters.展开更多
The purpose of this paper is to investigate a novel power cycle using low-temperature heat sources such as oceanic-thermal, biomass as well as industrial waste heat. Both a reheater and a liquid-gas ejector are used i...The purpose of this paper is to investigate a novel power cycle using low-temperature heat sources such as oceanic-thermal, biomass as well as industrial waste heat. Both a reheater and a liquid-gas ejector are used in this ammonia-water based cycle. Energy analysis and parametric analysis are performed to guide the theoretical performance and experimental investigation is done to verify the theoretical results. The results show that the generator pressure, heating source temperature and turbine outlet depressurization made by the ejector can affect the cycle performances. Besides, the experimental thermal efficiency is much lower than the theoretical one on account of the heat losses and irreversibility. Moreover, the performance of liquid-gas ejector is affected by primary flow pressure and temperature.展开更多
基金supported by RFBR according to the research project No.16-35-00188 mol_aproject“Climatic and ecological changes in Siberia by the data on glacio-chemical,diatomic and sporepollen analysis of ice-cores”(No.0383-2014-0005)
文摘We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of "Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and East zonal(Nm-Ez)" circulation groups and to the increasing contribution of "West zonal and Southern meridional(Wz-Sm)" circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of "West zonal(Wz)","Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and Southern meridional(Nm-Sm)" circulation groups. For the cold seasons,a substantialincrease of "Wz-Sm" and a decrease of "Nm-Sa","Nm-Ez" circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).
基金Supported by National Natural Science Foundation of China (Nos,40890153 and 40576016)
文摘Using the data of conductivity-temperature-depth (CTD) intensive observations conducted during Oct-Nov. 2005, this study provides the first three-dimension quasi-synoptic description of the circulation in the western North Pacific. Several novel phenomena are revealed, especially in the deep ocean where earlier observations were very sparse. During the observations, the North Equatorial Current (NEC) splits at about 12°N near the sea surface. This bifurcation shifts northward with depth, reaching about 20°N at 1 000 m, and then remains nearly unchanged to as deep as 2 000 m. The Luzon Undercurrent (LUC), emerging below the Kuroshio from about 21°N, intensifies southward, with its upper boundary surfacing around 12°N. From there, part of the LUC separates from the coast, while the rest continues southward to join the Mindanao Current (MC). The MC extends to 2 000 m near the coast, and appears to be closely related to the subsurface cyclonic eddies which overlap low-salinity water from the North Pacific. The Mindanao Undercurrent (MUC), carrying waters from the South Pacific, shifts eastward upon approaching the Mindanao coast and eventually becomes part of the eastward undercurrent between 10°N and 12°N at 130°E. In the upper 2 000 dbar, the total westward transport across 130°E between 7.5°N and 18°N reaches 65.4 Sv (1 Sv = 10-6 m3s^-1), the northward transport across 18°N from Luzon coast to 130°E is up to 35.0 Sv, and the southward transport across 7.5°N from Mindanao coast to 130°E is 27.9 Sv.
文摘Soil water is one of renewable water resources.Some properties of soil water concerning with its availability to plant are briefly described.An equation for estimating the amount of soil water resource is presented.Based on the evaporation demand of atmosphere,the evaluation coefficient for soil water resource is suggested.
基金Project(2006-8) supported by the Huadian International Corporation Limited
文摘The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.
基金supported by National Basic Research Program of China(2010CB428406)the National Natural Science Foundation of China (No. 41071025/40730632)MWR Commonweal Project (200801001)
文摘Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts etc. And it is especially remarkable in semi-humid and semi-arid region. In this paper, the impacts of climate change on the hydrological cycle were analyzed for the Hai River Basin, a semi-humid and semi-arid basin and also the water receiving area of the middle route of South-to-North Water Diversion project. Meanwhile it is the most vulnerable to climate change. Firstly, the linear regression and Mann-Kendall non-parametric test methods were used to analyze the change characteristics of the hydrological and meteorological elements for the period from 1960 to 2009. The results show a significant increase in temperature, while precipitation decreases slightly, and runoff decreases drastically over the past 50 years. Secondly, the applicability of SWAT (Soil and Water Assessment Tool) model based on the DEM (Digital Elevation Model), land use and soil type was verified in the basin. Results show the model performs well in this basin. Furthermore, the water balance model, Fu's theory and Koichiro's theory were used to calculate the actual evaporation, comparing to the simulated actual evaporation by SWAT model to validate the result for the lack of large-scale observed evaporation datasets. Possible reasons were also analyzed to explore the reasonable factor for the decline of the runoff. Finally the precipitation, temperature, runoff and evaporation response processes based on the IPCC AR4 multi-mode climate models and the verified SWAT model under different GHG emission scenarios (SRES-A2, AIB and B1) in the 21st century were discussed in three time periods: 2020s (2011-2040), 20S0s (2041-2070), 2080s (2071-2099). Results show that there are systematic positive trends for precipitation and temperature while the trends for runoff and evaporation will differ among sub-areas. The results will offer some references for adaptive water management in a changing environment, also including adaptation of a cross-basin water transfer project.
基金Project(10YZ156) supported by Innovation Program of Shanghai Municipal Education Commission, China Project(sdl09009) supported by Training Program for Outstanding Youth Teacher of Shanghai Municipal Education Commission, China Project(Z2010-103) supported by Shanghai Education Development Foundation, China
文摘Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Based on the field study result, by using the simulation sol, ware, THERB, the effectiveness of the crawlspace warm air heating system has been examined. The effect of the factors, such as the wind amount circulating between crawlspace and indoor space, foundation insulation condition, and heat amount into the crawlspace, on the indoor thermal environment has been analyzed. Based on these analyses, the measured crawlspace heating system can make the average temperature of the living room above 20℃. These two houses have excellent thermal environment. According to the simulating result, heat amount input into crawlspace, which can make comfortable indoor thermal environment, for every month in heating period has been roughly concluded, and they are 600 W in December and March and 800 W in February and January, respectively.
文摘Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configurations, hindering use of a recuperator in Helium cycles and conditioning the outlet turbine temperature in CO2 ones. In both cycles, it is possible to take advantage of the exhaust thermal energy by coupling the Brayton to a Rankine cycle, with an organic fluid in the helium case (iso-butane has been investigated) and steam in the CO2 case. The highest efficiency achieved with Helium cycle is 38.5% using Organic Rankine Cycle and 32.6% with Helium alone. The efficiency changes from 46.7% using Rankine cycle to 41% with CO2 alone. The Helium cycle is highly sensitive to turbine efficiency and in a moderate way to compressor efficiency and pressure drops, being nearly insensitive to thermal effectiveness in heat exchangers. On the other hand, CO2 is nearly insensitive to all the parameters.
基金supported by the National Natural Science Foundation of China (Grant No. 51076146)
文摘The purpose of this paper is to investigate a novel power cycle using low-temperature heat sources such as oceanic-thermal, biomass as well as industrial waste heat. Both a reheater and a liquid-gas ejector are used in this ammonia-water based cycle. Energy analysis and parametric analysis are performed to guide the theoretical performance and experimental investigation is done to verify the theoretical results. The results show that the generator pressure, heating source temperature and turbine outlet depressurization made by the ejector can affect the cycle performances. Besides, the experimental thermal efficiency is much lower than the theoretical one on account of the heat losses and irreversibility. Moreover, the performance of liquid-gas ejector is affected by primary flow pressure and temperature.