Sulfate reducing bacteria were isolated from the soil sample of Roaster-Acid unit of Debari Zinc Smelter of Hindustan Zinc Ltd., India and were adapted for effluent water of Zinc hydrometallurgy plant to sustain zinc ...Sulfate reducing bacteria were isolated from the soil sample of Roaster-Acid unit of Debari Zinc Smelter of Hindustan Zinc Ltd., India and were adapted for effluent water of Zinc hydrometallurgy plant to sustain zinc concentration of about 500 ppm and iron concentration of about 160 ppm with high acidity (pH 〈 1.0). Nutrient broth, whey, ethanol and sucrose were tested as carbon source for SRB (sulfate reducing bacteria) out of which whey was found as the best electron donor to expedite the rate of biological treatment with SRB. A two stage anaerobic bioreactor was developed with a treatment capacity of 30 L effluent water in 4 days. The concentration of heavy metals in the treated water was within the permissible limits. The suggested methodology generates no solid waste, is environment friendly and may be commercially implemented for treatment of zinc plant effluent.展开更多
文摘Sulfate reducing bacteria were isolated from the soil sample of Roaster-Acid unit of Debari Zinc Smelter of Hindustan Zinc Ltd., India and were adapted for effluent water of Zinc hydrometallurgy plant to sustain zinc concentration of about 500 ppm and iron concentration of about 160 ppm with high acidity (pH 〈 1.0). Nutrient broth, whey, ethanol and sucrose were tested as carbon source for SRB (sulfate reducing bacteria) out of which whey was found as the best electron donor to expedite the rate of biological treatment with SRB. A two stage anaerobic bioreactor was developed with a treatment capacity of 30 L effluent water in 4 days. The concentration of heavy metals in the treated water was within the permissible limits. The suggested methodology generates no solid waste, is environment friendly and may be commercially implemented for treatment of zinc plant effluent.