Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
With the help of an extended mapping approach, a new type of variable separation excitation with three arbitrary functions of the (2+1)-dimensional dispersive long-water wave system (DLW) is derived. Based on the deri...With the help of an extended mapping approach, a new type of variable separation excitation with three arbitrary functions of the (2+1)-dimensional dispersive long-water wave system (DLW) is derived. Based on the derived variable separation excitation, abundant non-propagating solitons such as dromion, ring, peakon, and compacton etc.are revealed by selecting appropriate functions in this paper.展开更多
The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrody-namic modei was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug...The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrody-namic modei was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug frequency on the frequency of unstable interfacial wave. Using air and water, experimental verification of the modei was carried out in a large range of flow parameters. Six electrical probes were installed at different positions of a horizontal plexiglass pipe to detect slug frequency development. The pipe is 30m long and its inner diameter is 24 mm. It is observed experimentally that the interfacial wave frequency at the inlet is about l to 3 times the frequency of stable slug. The slug frequencies predicted by the modei fit well with Tronconi (1990) modei and the experimental data. The combination of the hydrodynamic modei and the experimental data results in a conclusion that the frequency of equilibrium liquid slug is approximately half the miniraum frequency of interfacial wave.展开更多
In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling, the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulati...In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling, the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulation researches were carried out based on the model. The results indicate that both drum level and drum length have functional relations with period of drum level wave action and sloshing. When the drum level decreases or drum length increases, the period of drum level wave action and sloshing increases, density of liquid and number of sub-module division have little influence on the period of drum level wave action and sloshing. The model was validated by the analytical solution theory of liquid’s wave action and sloshing in cuboid container, and the 3D graphics of drum level wave action and sloshing was also obtained. The model can dynamically reflect the rules of wave action and sloshing of water in the container exactly.展开更多
An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using...An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using SWASH,a non-hydrostatic numerical wave model.The nonlinear parameters(i.e.,asymmetry,skewness,and kurtosis) are calculated,and the empirical formulas for these parameters are presented as a function of the local Ursell number based on the present numerical data measured.In the shoaling area of the submerged sill,the nonlinear characteristics of waves are more obvious when waves propagate in the same direction as the currents than when waves propagate in the opposite direction.Whereas nonlinear parameters grow with the strengthening of the following currents over the crest,they tend to decrease as the adverse current velocity increases over the crest area of the submerged sill.展开更多
The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been d...The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been determined. The effect of freeboard, packing density and wave steepness on the armour layer stability on crest, front and rear slope has been investigated. Armour units were mostly displaced in the most upper part of the seaward slope and at the seaward side of the crest. Damage on the crest was progressing towards the rear slope. About 40% to 50% larger armour units are required on the seaward slope and crest of low crested structures (as compared to conventional high crested breakwaters). About 35% larger armour units are required on the rear slope. Larger armour units are not required on submerged breakwaters if the water depth on the crest exceeds 40% of design wave height.展开更多
For the Z-R relationship in radar-based rainfall estimation, the distribution of corresponding R values for a given Z value (or the corresponding Z value for a given R value) may be highly skewed. However, the traditi...For the Z-R relationship in radar-based rainfall estimation, the distribution of corresponding R values for a given Z value (or the corresponding Z value for a given R value) may be highly skewed. However, the traditional power-law model is physically deduced and fitted under the normal-distribution presumption of radar wave echoes associated with a rain rate value, and it may not be very appropriate. Considering this problem, the authors devised several generalized linear models with different forms and distribution presumptions to represent the Z-R relationship. Radar-reflectivity scans observed by a CINRAD/SC Doppler radar and 5-minute rainfall accumulation recorded by 10 ground gauges were used to fit these models. All data used in this study were collected during some large rainfalls of the period from 2005 to 2007. The radar and all gauges were installed in the catchment of the Yishu River, a branch of the Huaihe River in China. Three models based on normal distribution and a dBZ presumption of gamma distribution were fitted using maximum-likelihood techniques, which were resolved by genetic algorithms. Comparisons of estimated maximized likelihoods based on assumptions of gamma and normal distribution showed that all generalized linear models (GLMs) of presumed gamma distribution were better fitted than GLMs based on normal distribution. In a comparison of maximum-likelihood, the differences between these three models were small. Three error statistics were used to assess the agreement between radar estimated rainfall and gauge rainfall: relative bias (B), root mean square error (RMSE), and correlation coefficient (r). The results showed that no one model was excellent in all criteria. On the whole, the GLM-based models gave smaller relative bias than the traditional power-law model. It is suggested that validations conducted in many previous works should have been made against a specific criterion but overlooked others.展开更多
Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kau...Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kaup system whose Lax pair can be derived by the Ablowitz-Kaup-Newell-Segur technology. With symbolic computation, based on the aforementioned Lax pair, the N-fold Darboux transformation is constructed with a gauge transformation and the multi-soliton solutions are obtained. Finally, the elastic interactions of the two-soliton solutions (including the head-on and overtaking collisions) for the WBK system are graphically studied. Those multi-soliton collisions can beused to illustrate the bidirectional propagation of the waves in shallow water.展开更多
Using a microwave radiative transfer (MWRT) model with microwave brightness temperatures (TBs) observed from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), an indirect approach evaluate...Using a microwave radiative transfer (MWRT) model with microwave brightness temperatures (TBs) observed from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), an indirect approach evaluated hydrometeors generated from the Weather Research and Forecasting (WRY) model in the process of CHABA typhoon in August 2004. This study compares the simulated TBs generated from the microwave radioactive transfer model connected to the WRF model with the observed TBs derived from TMI and analyzes the differences between these TBs. The results indicate that the WRF model underestimates the amount and area of liquid and ice hydrometeors inside the typhoon center. The results also indicate relatively better agreement between the simulated and the observed TBs in the vertical polarization than in the horizontal polarization.展开更多
A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of...A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.展开更多
A mathematical model for constant pressure filtration is established. The distribution of hydraulic pressure within the cake and the medium resistance are measured. The medium resistance Rm is calculated from the supp...A mathematical model for constant pressure filtration is established. The distribution of hydraulic pressure within the cake and the medium resistance are measured. The medium resistance Rm is calculated from the suppositional filtration time θm. It is demonstrated that Rm is nearly a constant for a given filter cloth.展开更多
This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes seco...This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes second-order waves. The numerical results obtained for limiting cases of double-row and triple-row walls are in good agreement with results of previous studies and experimental results. Comparisons with experimental measurements of the reflection, transmission, and dissipation coefficients (CR, Cr, and CE) for double-row walls show that the proposed mathematical model adequately reproduces most of the important features. We found that for double-row walls, the CR increases with increasing wave number, kd, and with a decreasing permeable wall part, din. The Cr follows the opposite trend. The CE slowly increases with an increasing kd for lower kd values, reaches a maximum, and then decreases again. In addition, an increasing porosity of dm would significantly decrease the CR while increasing the Cr. At lower values of kd, a decreasing porosity increases the CE, but for high values of kd, a decreasing porosity reduces the Ce. The numerical results indicate that, for triple-row walls, the effect of the arrangement of the chamber widths on hydrodynamic characteristics is not significant, except when kd〈0.5 Double-row slotted breakwaters may exhibit a good wave-absorbing performance at kd〉0.5, where by the horizontal wave force may be smaller than that of a single wall. On the other hand, the difference between double-row and triple-row vertical slotted breakwaters is marginal.展开更多
The dynamical-wave routing model of the urban unsteady and non-pressure rain pipe flow was established by conservation of mass, momentum and energy, and it was solved by applying the four point implicit difference met...The dynamical-wave routing model of the urban unsteady and non-pressure rain pipe flow was established by conservation of mass, momentum and energy, and it was solved by applying the four point implicit difference method and the pursuit method. It was obtained from the experiment checking and comparative analysis that the dynamical-wave muting model can reflect influence like attenuate and backwater when flood peak propagate in pipeline with high calculation precision and vast application scope, and it can be applied in routing of urban rain pipe flow of different slopes and inflow conditions. The routing model supplies a scientific foundation for the town rainfall piping design or checking, disaster administration of storm runoff, and so on.展开更多
基于位置的社交网络(location-based social network,LBSN)随着定位技术与智能终端技术的发展拥有了极大研究价值,其中商业兴趣点(point-of-interest,POI)推荐成为一大研究视角,且随着数据量成倍增长,成为了必须解决的问题.但当前推荐...基于位置的社交网络(location-based social network,LBSN)随着定位技术与智能终端技术的发展拥有了极大研究价值,其中商业兴趣点(point-of-interest,POI)推荐成为一大研究视角,且随着数据量成倍增长,成为了必须解决的问题.但当前推荐更多关注于考虑地理因素的推荐,对社交关系的考虑较少,为了改进推荐效果,本文重点考虑社交关系中朋友关系的使用,提出了基于带权水波模型的商业POI推荐方法.该方法基于用户朋友关系和交互信息构建偏好网络,在网络中模拟水波扩散,考虑波纹重叠处的偏好增强情况,计算候选POI在目标用户网络中的偏好传播,并通过关系权重来体现地理因素和时间因素对偏好传播的影响,保证相似度计算的准确,以此形成用户推荐列表.并通过Yelp的数据实验证明该算法能取得较优推荐效果.展开更多
The purpose of this study is to set up a dynamically linked 1D and 2D hydrodynamic and sediment transport models for dam break flow.The 1D-2D coupling model solves the generalized shallow water equations,the non-equil...The purpose of this study is to set up a dynamically linked 1D and 2D hydrodynamic and sediment transport models for dam break flow.The 1D-2D coupling model solves the generalized shallow water equations,the non-equilibrium sediment transport and bed change equations in a coupled fashion using an explicit finite volume method.It considers interactions among transient flow,strong sediment transport and rapid bed change by including bed change and variable flow density in the flow continuity and momentum equations.An unstructured Quadtree rectangular grid with local refinement is used in the 2D model.The intercell flux is computed by the HLL approximate Riemann solver with shock captured capability for computing the dry-to-wet interface for all models.The effects of pressure and gravity are included in source term in this coupling model which can simplify the computation and eliminate numerical imbalance between source and flux terms.The developed model has been tested against experimental and real-life case of dam-break flow over fix bed and movable bed.The results are compared with analytical solution and measured data with good agreement.The simulation results demonstrate that the coupling model is capable of calculating the flow,erosion and deposition for dam break flows in complicated natural domains.展开更多
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
文摘With the help of an extended mapping approach, a new type of variable separation excitation with three arbitrary functions of the (2+1)-dimensional dispersive long-water wave system (DLW) is derived. Based on the derived variable separation excitation, abundant non-propagating solitons such as dromion, ring, peakon, and compacton etc.are revealed by selecting appropriate functions in this paper.
基金National Natural Science Foundation of China(No.50206016)
文摘The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrody-namic modei was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug frequency on the frequency of unstable interfacial wave. Using air and water, experimental verification of the modei was carried out in a large range of flow parameters. Six electrical probes were installed at different positions of a horizontal plexiglass pipe to detect slug frequency development. The pipe is 30m long and its inner diameter is 24 mm. It is observed experimentally that the interfacial wave frequency at the inlet is about l to 3 times the frequency of stable slug. The slug frequencies predicted by the modei fit well with Tronconi (1990) modei and the experimental data. The combination of the hydrodynamic modei and the experimental data results in a conclusion that the frequency of equilibrium liquid slug is approximately half the miniraum frequency of interfacial wave.
基金Project(200310) supported by Edison Research Foundation from General Electric (GE) in USAProject(59976022) supported by the National Natural Science Foundation of China
文摘In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling, the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulation researches were carried out based on the model. The results indicate that both drum level and drum length have functional relations with period of drum level wave action and sloshing. When the drum level decreases or drum length increases, the period of drum level wave action and sloshing increases, density of liquid and number of sub-module division have little influence on the period of drum level wave action and sloshing. The model was validated by the analytical solution theory of liquid’s wave action and sloshing in cuboid container, and the 3D graphics of drum level wave action and sloshing was also obtained. The model can dynamically reflect the rules of wave action and sloshing of water in the container exactly.
基金supported financially by the National Nature Science Foundation(Nos.51422901,51679031)a Foundation for the Author of National Excellent Doctoral Dissertation of P.R.China(No.201347)+3 种基金National Key Research and Development Program(No.2017YFC 1404205)High-Tech Ship Research Projects Sponsored by the Ministry of Industry and Information Technology(MIIT) of Chinathe Fundamental Research Funds for the Central Universities(No.DUT16TD08)State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University(HESS-1610)
文摘An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using SWASH,a non-hydrostatic numerical wave model.The nonlinear parameters(i.e.,asymmetry,skewness,and kurtosis) are calculated,and the empirical formulas for these parameters are presented as a function of the local Ursell number based on the present numerical data measured.In the shoaling area of the submerged sill,the nonlinear characteristics of waves are more obvious when waves propagate in the same direction as the currents than when waves propagate in the opposite direction.Whereas nonlinear parameters grow with the strengthening of the following currents over the crest,they tend to decrease as the adverse current velocity increases over the crest area of the submerged sill.
文摘The stability of single layer armour units on low crested and submerged breakwaters has been investigated in 2D hydraulic model tests. Armour unit movements including settlements, rocking and displacements have been determined. The effect of freeboard, packing density and wave steepness on the armour layer stability on crest, front and rear slope has been investigated. Armour units were mostly displaced in the most upper part of the seaward slope and at the seaward side of the crest. Damage on the crest was progressing towards the rear slope. About 40% to 50% larger armour units are required on the seaward slope and crest of low crested structures (as compared to conventional high crested breakwaters). About 35% larger armour units are required on the rear slope. Larger armour units are not required on submerged breakwaters if the water depth on the crest exceeds 40% of design wave height.
基金financially supported by the National Natural Science Foundation of China (Grant No. 40971024)the National Basic Research Program of China (Grant No. 2006CB400502)the Special Meteorology Project (GYHY(QX)2007-6-1)
文摘For the Z-R relationship in radar-based rainfall estimation, the distribution of corresponding R values for a given Z value (or the corresponding Z value for a given R value) may be highly skewed. However, the traditional power-law model is physically deduced and fitted under the normal-distribution presumption of radar wave echoes associated with a rain rate value, and it may not be very appropriate. Considering this problem, the authors devised several generalized linear models with different forms and distribution presumptions to represent the Z-R relationship. Radar-reflectivity scans observed by a CINRAD/SC Doppler radar and 5-minute rainfall accumulation recorded by 10 ground gauges were used to fit these models. All data used in this study were collected during some large rainfalls of the period from 2005 to 2007. The radar and all gauges were installed in the catchment of the Yishu River, a branch of the Huaihe River in China. Three models based on normal distribution and a dBZ presumption of gamma distribution were fitted using maximum-likelihood techniques, which were resolved by genetic algorithms. Comparisons of estimated maximized likelihoods based on assumptions of gamma and normal distribution showed that all generalized linear models (GLMs) of presumed gamma distribution were better fitted than GLMs based on normal distribution. In a comparison of maximum-likelihood, the differences between these three models were small. Three error statistics were used to assess the agreement between radar estimated rainfall and gauge rainfall: relative bias (B), root mean square error (RMSE), and correlation coefficient (r). The results showed that no one model was excellent in all criteria. On the whole, the GLM-based models gave smaller relative bias than the traditional power-law model. It is suggested that validations conducted in many previous works should have been made against a specific criterion but overlooked others.
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006,Chinese Ministry of Education
文摘Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kaup system whose Lax pair can be derived by the Ablowitz-Kaup-Newell-Segur technology. With symbolic computation, based on the aforementioned Lax pair, the N-fold Darboux transformation is constructed with a gauge transformation and the multi-soliton solutions are obtained. Finally, the elastic interactions of the two-soliton solutions (including the head-on and overtaking collisions) for the WBK system are graphically studied. Those multi-soliton collisions can beused to illustrate the bidirectional propagation of the waves in shallow water.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q11-04 and KZCX2-EW-QN507)the National Basic Research Program of China (973 Program,Grant No. 2010CB428601)the National Natural Science Foundation of China (Grant Nos. 40730950 and 41075041)
文摘Using a microwave radiative transfer (MWRT) model with microwave brightness temperatures (TBs) observed from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), an indirect approach evaluated hydrometeors generated from the Weather Research and Forecasting (WRY) model in the process of CHABA typhoon in August 2004. This study compares the simulated TBs generated from the microwave radioactive transfer model connected to the WRF model with the observed TBs derived from TMI and analyzes the differences between these TBs. The results indicate that the WRF model underestimates the amount and area of liquid and ice hydrometeors inside the typhoon center. The results also indicate relatively better agreement between the simulated and the observed TBs in the vertical polarization than in the horizontal polarization.
基金Sponsored by the National 985 Project Foundation of China
文摘A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.
文摘A mathematical model for constant pressure filtration is established. The distribution of hydraulic pressure within the cake and the medium resistance are measured. The medium resistance Rm is calculated from the suppositional filtration time θm. It is demonstrated that Rm is nearly a constant for a given filter cloth.
文摘This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes second-order waves. The numerical results obtained for limiting cases of double-row and triple-row walls are in good agreement with results of previous studies and experimental results. Comparisons with experimental measurements of the reflection, transmission, and dissipation coefficients (CR, Cr, and CE) for double-row walls show that the proposed mathematical model adequately reproduces most of the important features. We found that for double-row walls, the CR increases with increasing wave number, kd, and with a decreasing permeable wall part, din. The Cr follows the opposite trend. The CE slowly increases with an increasing kd for lower kd values, reaches a maximum, and then decreases again. In addition, an increasing porosity of dm would significantly decrease the CR while increasing the Cr. At lower values of kd, a decreasing porosity increases the CE, but for high values of kd, a decreasing porosity reduces the Ce. The numerical results indicate that, for triple-row walls, the effect of the arrangement of the chamber widths on hydrodynamic characteristics is not significant, except when kd〈0.5 Double-row slotted breakwaters may exhibit a good wave-absorbing performance at kd〉0.5, where by the horizontal wave force may be smaller than that of a single wall. On the other hand, the difference between double-row and triple-row vertical slotted breakwaters is marginal.
基金Hunan Provincial Education Department of Key Projects(No.08A019)Funded Projects in Hunan Science and Technology Department(No.2008SK4029)
文摘The dynamical-wave routing model of the urban unsteady and non-pressure rain pipe flow was established by conservation of mass, momentum and energy, and it was solved by applying the four point implicit difference method and the pursuit method. It was obtained from the experiment checking and comparative analysis that the dynamical-wave muting model can reflect influence like attenuate and backwater when flood peak propagate in pipeline with high calculation precision and vast application scope, and it can be applied in routing of urban rain pipe flow of different slopes and inflow conditions. The routing model supplies a scientific foundation for the town rainfall piping design or checking, disaster administration of storm runoff, and so on.
文摘基于位置的社交网络(location-based social network,LBSN)随着定位技术与智能终端技术的发展拥有了极大研究价值,其中商业兴趣点(point-of-interest,POI)推荐成为一大研究视角,且随着数据量成倍增长,成为了必须解决的问题.但当前推荐更多关注于考虑地理因素的推荐,对社交关系的考虑较少,为了改进推荐效果,本文重点考虑社交关系中朋友关系的使用,提出了基于带权水波模型的商业POI推荐方法.该方法基于用户朋友关系和交互信息构建偏好网络,在网络中模拟水波扩散,考虑波纹重叠处的偏好增强情况,计算候选POI在目标用户网络中的偏好传播,并通过关系权重来体现地理因素和时间因素对偏好传播的影响,保证相似度计算的准确,以此形成用户推荐列表.并通过Yelp的数据实验证明该算法能取得较优推荐效果.
基金supported by the National Basic Research Program of China(Grant No.2013CB430403)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201205023)+3 种基金the Program for Liaoning Excellent Talents in University(Grant No.LJQ2013077)the Science and Technology Foundation of Dalian City(Grant No.2013J21DW009)the Special Funds for Postdoctoral Innovative Projects of Liaoning Province(Grant No.2011921018)the Special Funds for Talent Projects of Dalian Ocean University(Grant No.SYYJ2011004)
文摘The purpose of this study is to set up a dynamically linked 1D and 2D hydrodynamic and sediment transport models for dam break flow.The 1D-2D coupling model solves the generalized shallow water equations,the non-equilibrium sediment transport and bed change equations in a coupled fashion using an explicit finite volume method.It considers interactions among transient flow,strong sediment transport and rapid bed change by including bed change and variable flow density in the flow continuity and momentum equations.An unstructured Quadtree rectangular grid with local refinement is used in the 2D model.The intercell flux is computed by the HLL approximate Riemann solver with shock captured capability for computing the dry-to-wet interface for all models.The effects of pressure and gravity are included in source term in this coupling model which can simplify the computation and eliminate numerical imbalance between source and flux terms.The developed model has been tested against experimental and real-life case of dam-break flow over fix bed and movable bed.The results are compared with analytical solution and measured data with good agreement.The simulation results demonstrate that the coupling model is capable of calculating the flow,erosion and deposition for dam break flows in complicated natural domains.