The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid cond...The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions. Humic acids (HAs) isolated by conventional procedures from CS, TS, and unamended (SO) and sludge amended soils were analysed for elemental (C, H, N, S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible, Fourier transform infrared and fluorescence spectroscopies. With respect to CS, TS had similar pH and total P and K contents, larger dry matter, total organic C, total N and C/N ratio and smaller ash content and electrical conductivity. Amendment with both CS and TS induced a number of modifications in soil properties, including an increase of pH, electrical conductivity, total organic C, total N, and available P. The CS-HA had greater O, total acidity, carboxyl, and phenolic OH group contents and smaller C and H contents than TS-HA. The CS-HA and TS-HA had larger N and S contents, smaller C, O and acidic functional group contents, and lower aromatic polycondensation and humification degrees than SO-HA. Amended soil-HAs showed C, H, N and S contents larger than SO-HA, suggesting that sludge HAs were partially incorporated into soil HAs. These effects were more evident with increasing number of sludge applications.展开更多
A field experiment with cotton was conducted on a well drained, calcareous, clay loamy Typic Xerochreptto investigate the utility of sewage sludge as a partial substitute for fertilizers and the influence of its appli...A field experiment with cotton was conducted on a well drained, calcareous, clay loamy Typic Xerochreptto investigate the utility of sewage sludge as a partial substitute for fertilizers and the influence of its application on the basic soil properties and heavy metal concentrations. The experimental design was completelyrandomized blocks with five treatments replicated four times each. Sewage sludge came from the treatmentplant of the municipality of Volos, Central Greece, with the following characteristics: organic matter content36.6 %, pH (H2O 1:5) 6.89, CaCO3 53.4 g kg-1 , total N 26.5 g kg--1, total P 33.5 g kg--1 , and total K 968mg kg--1 soil. Heavy metal concentrations were Cd 5.24, Pb 442, Ni 38, Cu 224, Zn 1 812, and Mn 260 mgkg--1 dry weight, respectively. The soil was high in potassium (K) and poor in available phosphorus (P). Theresults showed that sewage sludge application increased cotton yield and K and P concentrations in cottonleaves. Soil pH was reduced in the case of higher sewage sludge rate. Electrical conductivity, organic mattercontent, total N, and available P were significantly increased. Total concentrations of Zn, Pb, and Cu wereslightly increased. DTPA-extractable Zn, Cu and Mn were also significantly increased. Available forms ofall heavy metals, except Cd, were significantly correlated with organic matter content in a positive way andnegatively with soil pH.展开更多
Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive ...Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive mined-out gobs, enormous ore body under roadway and low recovery ratio of Yongshaba Mine, Kaiyang Phosphor Mine Group, Guizhou Province, China. An appropriate backfill system and craflwork were designed, using shattering milling method to crush gypsum, double-axles mixing and strong activation mixing way to mix slurry, cemented slurry and mullock backfill alternately process. The results show that gypsum is fit for backfilling afterwards by adding fly ash, though it is not an ideal aggregate for fine granule and coagulate retardation. The suggested dosage (the mass ratio of cement to fly ash to gypsum) is 1:1:6-1:1:8 with mass fraction of solid materials 60%-63%. Slurry is transported in suspend state with non-plastic strength, and then in concretion state after backfilling. The application to mine shows the technology is feasible, and gypsum utilization ratio is up to 100%. Transportation and backfill effect is very good for paste-like slurry and drenching cemented slurry into mullock, and the compressive strength and recovery ratio are 2.0 MPa and 82.6%, respectively, with the maximum subsidence of surface only 1.307 mm. Furthermore, the investment of system is about 7 × 10^6 yuan (RMB), only 1/10 of that of traditional paste backfill system.展开更多
An equivalent amount of metallurgical slag, water-quenched slag powder and activator was substituted for a part of cement to prepare concretes at strength grades ofC25, C30 and C40. Thanks to the filling effect, pozzo...An equivalent amount of metallurgical slag, water-quenched slag powder and activator was substituted for a part of cement to prepare concretes at strength grades ofC25, C30 and C40. Thanks to the filling effect, pozzolanic effect, raicro-aggregate effect, and improvement of pore structure, the prepared concretes not only had greater strength compared with reference concrete, but also had greater impermeability and frost-resistance. Moreover, the expansion reactions between alkali and aggregates were effectively inhibited. The slag and activator can serve as the raw materials for green concretes.展开更多
Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typicall...Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typically, high cement content is desirable for durability, but not for shrinkage and cracking issues on the surface. Thus, improving durability with low cement content while complying with other requirements is an ideal aim, which may be achieved by pozzolanic supplementary products. Pozzolans contribute in hydration reactions and optimise cement consumptions in favour of durable and low shrinkage products. In this paper, the mixes of nano-silica and fly ash are considered to investigate their effect on strength, durability and shrinkage of modified CRB (crushed rock base) material. In the end, the benefits and features of nano-silica as a pozzolanic material will be focused and discussed more for effective cement consumption in soils.展开更多
The effect of cement on physiochemical properties of three types of soils i.e garden soil, agricultural soil and roadside soil was investigated. The ordinary Portland cement was used. The amount of cement added to soi...The effect of cement on physiochemical properties of three types of soils i.e garden soil, agricultural soil and roadside soil was investigated. The ordinary Portland cement was used. The amount of cement added to soil samples, as dry mass percentage was 20%. The results of analysis showed that the addition of cement is capable of bringing about changes in physiochemical properties of soil. The electrical conductivity and organic matter content in three soils get decreased by the addition of cement. While the pH, bulk density and water holding capacity of soils after the addition of cement gets increased. The soil found most suitable to be treated with cement was roadside soil. It was concluded that cement can be used to change the physiochemical properties of soil and this technique has great utility in improving the quality of problematic soils.展开更多
In order to investigate the feasibility of biological treatment of bypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated s...In order to investigate the feasibility of biological treatment of bypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9℃) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiment. Pilot-scale studies showed that high COD removal efficiency, higher than 85 %, was obtained at low temperature when 30 percent seawater [ seawater/(seawater + sewage) ] was introduced. The salinity improved the settleability of activated sludge, and average SV dropped down from 38% to 22. 5% after adding seawater. Sludge bulking could be forborne effectively because filamentous bacteria couldn't subsist under high salinity concentration.展开更多
There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive h...There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive has only effects on single trait, so it is difficult to meet cementing requirement. According to this situation we could use latex slurry to anti-gas channeling. We have synthesised a set of anti-gas channeling lightweight temperature-resistant latex slurry and formed a new channeling preventing latex slurry through plenty of previous laboratory experiments. Finally the performance of latex slurry on temperature-resistant, anti-gas channeling and the anti-gas channeling of cement paste are studied. The experimental results show that this latex system has strong temperature-resistant and anti-gas channeling, which completely meet the requirement of cementing in this area.展开更多
Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synth...Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synthetic fiber has more influence on low strength-grade concrete than on high strength-grade concrete, it makes little difference to the mechanical behavior of concrete in general. Test results and applications in construction show that the synthetic fiber can enhance the energy-absorbing capacity and deformation performance of concrete effectively.展开更多
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ...In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.展开更多
Cement content of carbonate in tight sandstone near section is much the fault of well Xia503, in the Huimin sag in Linnan sub-depression higher than that of the normal sandstones far away from In order to understand t...Cement content of carbonate in tight sandstone near section is much the fault of well Xia503, in the Huimin sag in Linnan sub-depression higher than that of the normal sandstones far away from In order to understand the origin and its impact on fault sealing, analyses of the whole-rock minerals, casting thin sections, cathodoluminescence, isotope and physical properties are conducted on cores from well Xia503. It is found that c~ L3C varies from 0.1%o to 0.6%o with the average value of 0.42%o, c~ LSO varies from -13.5%o to -12.3%c with the average of-13.1%~., and C-O isotope plotting points are distributed in the low to moderate temperature area of the hydrothermal dolomite. According to the occupied relationship, cathodoluminescence, and C-O isotope feature, the carbonate cementation could be divided into four stages: calcites, dolomite, ankerite, and ferrocalcite. It is discovered that the carbonate cementation is negatively related to reservoir physical property, with the porosity of 4.8%, permeability of 0.37 roD, and displacement pressure of 1.97 MPa in the tight sandstone, which have increased by almost one order of magnitude compared to the porosity of 14.3%, permeability of 3.73 mD, and displacement pressure of 0.27 MPa in the normal sandstone, which is far away from the fault. Regardless of the lithology of the counterpart wall of the fault, only the displacement pressure difference caused by carbonate cementation between the tight sandstone and the normal sandstone could seal 41 m high oil column.展开更多
文摘The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions. Humic acids (HAs) isolated by conventional procedures from CS, TS, and unamended (SO) and sludge amended soils were analysed for elemental (C, H, N, S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible, Fourier transform infrared and fluorescence spectroscopies. With respect to CS, TS had similar pH and total P and K contents, larger dry matter, total organic C, total N and C/N ratio and smaller ash content and electrical conductivity. Amendment with both CS and TS induced a number of modifications in soil properties, including an increase of pH, electrical conductivity, total organic C, total N, and available P. The CS-HA had greater O, total acidity, carboxyl, and phenolic OH group contents and smaller C and H contents than TS-HA. The CS-HA and TS-HA had larger N and S contents, smaller C, O and acidic functional group contents, and lower aromatic polycondensation and humification degrees than SO-HA. Amended soil-HAs showed C, H, N and S contents larger than SO-HA, suggesting that sludge HAs were partially incorporated into soil HAs. These effects were more evident with increasing number of sludge applications.
文摘A field experiment with cotton was conducted on a well drained, calcareous, clay loamy Typic Xerochreptto investigate the utility of sewage sludge as a partial substitute for fertilizers and the influence of its application on the basic soil properties and heavy metal concentrations. The experimental design was completelyrandomized blocks with five treatments replicated four times each. Sewage sludge came from the treatmentplant of the municipality of Volos, Central Greece, with the following characteristics: organic matter content36.6 %, pH (H2O 1:5) 6.89, CaCO3 53.4 g kg-1 , total N 26.5 g kg--1, total P 33.5 g kg--1 , and total K 968mg kg--1 soil. Heavy metal concentrations were Cd 5.24, Pb 442, Ni 38, Cu 224, Zn 1 812, and Mn 260 mgkg--1 dry weight, respectively. The soil was high in potassium (K) and poor in available phosphorus (P). Theresults showed that sewage sludge application increased cotton yield and K and P concentrations in cottonleaves. Soil pH was reduced in the case of higher sewage sludge rate. Electrical conductivity, organic mattercontent, total N, and available P were significantly increased. Total concentrations of Zn, Pb, and Cu wereslightly increased. DTPA-extractable Zn, Cu and Mn were also significantly increased. Available forms ofall heavy metals, except Cd, were significantly correlated with organic matter content in a positive way andnegatively with soil pH.
基金Project(2006BAB02A03)supported by the National Key Technology Research and Development ProgramProject(08MX16)supported by Mittal Scientific and Technological Innovation Projects of Central South University during 2008
文摘Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive mined-out gobs, enormous ore body under roadway and low recovery ratio of Yongshaba Mine, Kaiyang Phosphor Mine Group, Guizhou Province, China. An appropriate backfill system and craflwork were designed, using shattering milling method to crush gypsum, double-axles mixing and strong activation mixing way to mix slurry, cemented slurry and mullock backfill alternately process. The results show that gypsum is fit for backfilling afterwards by adding fly ash, though it is not an ideal aggregate for fine granule and coagulate retardation. The suggested dosage (the mass ratio of cement to fly ash to gypsum) is 1:1:6-1:1:8 with mass fraction of solid materials 60%-63%. Slurry is transported in suspend state with non-plastic strength, and then in concretion state after backfilling. The application to mine shows the technology is feasible, and gypsum utilization ratio is up to 100%. Transportation and backfill effect is very good for paste-like slurry and drenching cemented slurry into mullock, and the compressive strength and recovery ratio are 2.0 MPa and 82.6%, respectively, with the maximum subsidence of surface only 1.307 mm. Furthermore, the investment of system is about 7 × 10^6 yuan (RMB), only 1/10 of that of traditional paste backfill system.
文摘An equivalent amount of metallurgical slag, water-quenched slag powder and activator was substituted for a part of cement to prepare concretes at strength grades ofC25, C30 and C40. Thanks to the filling effect, pozzolanic effect, raicro-aggregate effect, and improvement of pore structure, the prepared concretes not only had greater strength compared with reference concrete, but also had greater impermeability and frost-resistance. Moreover, the expansion reactions between alkali and aggregates were effectively inhibited. The slag and activator can serve as the raw materials for green concretes.
文摘Cement improves properties of soil materials, such as durability, stiffness, strength and moisture susceptibility. Each of them needs different cement contents that might not be suitable for other properties. Typically, high cement content is desirable for durability, but not for shrinkage and cracking issues on the surface. Thus, improving durability with low cement content while complying with other requirements is an ideal aim, which may be achieved by pozzolanic supplementary products. Pozzolans contribute in hydration reactions and optimise cement consumptions in favour of durable and low shrinkage products. In this paper, the mixes of nano-silica and fly ash are considered to investigate their effect on strength, durability and shrinkage of modified CRB (crushed rock base) material. In the end, the benefits and features of nano-silica as a pozzolanic material will be focused and discussed more for effective cement consumption in soils.
文摘The effect of cement on physiochemical properties of three types of soils i.e garden soil, agricultural soil and roadside soil was investigated. The ordinary Portland cement was used. The amount of cement added to soil samples, as dry mass percentage was 20%. The results of analysis showed that the addition of cement is capable of bringing about changes in physiochemical properties of soil. The electrical conductivity and organic matter content in three soils get decreased by the addition of cement. While the pH, bulk density and water holding capacity of soils after the addition of cement gets increased. The soil found most suitable to be treated with cement was roadside soil. It was concluded that cement can be used to change the physiochemical properties of soil and this technique has great utility in improving the quality of problematic soils.
基金Sponsored by the Key Items of National Natural Science Foundation of China (Grant No. 50138010) and National 10th5 -year Scientific Research Project of Ministry of Science and Technology of China (Grant No.2001BA610A-09).
文摘In order to investigate the feasibility of biological treatment of bypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9℃) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiment. Pilot-scale studies showed that high COD removal efficiency, higher than 85 %, was obtained at low temperature when 30 percent seawater [ seawater/(seawater + sewage) ] was introduced. The salinity improved the settleability of activated sludge, and average SV dropped down from 38% to 22. 5% after adding seawater. Sludge bulking could be forborne effectively because filamentous bacteria couldn't subsist under high salinity concentration.
文摘There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive has only effects on single trait, so it is difficult to meet cementing requirement. According to this situation we could use latex slurry to anti-gas channeling. We have synthesised a set of anti-gas channeling lightweight temperature-resistant latex slurry and formed a new channeling preventing latex slurry through plenty of previous laboratory experiments. Finally the performance of latex slurry on temperature-resistant, anti-gas channeling and the anti-gas channeling of cement paste are studied. The experimental results show that this latex system has strong temperature-resistant and anti-gas channeling, which completely meet the requirement of cementing in this area.
文摘Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synthetic fiber has more influence on low strength-grade concrete than on high strength-grade concrete, it makes little difference to the mechanical behavior of concrete in general. Test results and applications in construction show that the synthetic fiber can enhance the energy-absorbing capacity and deformation performance of concrete effectively.
基金Projects(51278462,51378469)supported by the National Natural Science Foundation of ChinaProject(2011B81005)supported by Ningbo Science and Technology Innovation Team,ChinaProject(2013A610202)supported by Ningbo Natural Science Foundation of China
文摘In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.
基金supported by National Basic Research Program of China(Grant No.2012CB723104)National Natural Science Foundation of China(Grant Nos.41372108,41372134)Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,and SDUST Research Fund(Gant No.2010KYTD103)
文摘Cement content of carbonate in tight sandstone near section is much the fault of well Xia503, in the Huimin sag in Linnan sub-depression higher than that of the normal sandstones far away from In order to understand the origin and its impact on fault sealing, analyses of the whole-rock minerals, casting thin sections, cathodoluminescence, isotope and physical properties are conducted on cores from well Xia503. It is found that c~ L3C varies from 0.1%o to 0.6%o with the average value of 0.42%o, c~ LSO varies from -13.5%o to -12.3%c with the average of-13.1%~., and C-O isotope plotting points are distributed in the low to moderate temperature area of the hydrothermal dolomite. According to the occupied relationship, cathodoluminescence, and C-O isotope feature, the carbonate cementation could be divided into four stages: calcites, dolomite, ankerite, and ferrocalcite. It is discovered that the carbonate cementation is negatively related to reservoir physical property, with the porosity of 4.8%, permeability of 0.37 roD, and displacement pressure of 1.97 MPa in the tight sandstone, which have increased by almost one order of magnitude compared to the porosity of 14.3%, permeability of 3.73 mD, and displacement pressure of 0.27 MPa in the normal sandstone, which is far away from the fault. Regardless of the lithology of the counterpart wall of the fault, only the displacement pressure difference caused by carbonate cementation between the tight sandstone and the normal sandstone could seal 41 m high oil column.