A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mi...A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mixed up with cement at different mass fractions of 2%-8% and their properties were investigated. Based on the textural characteristics and strength, the granular red mud with 2% addition of cement maintaining for 6 d is identified to have better properties. The batch adsorption experiments for adsorption of Cd2+ ions from solution were performed at 30, 40 and 50 °C at different initial concentrations under the condition of constant pH of 6.5. The equilibrium adsorption was found to increase with the increase of temperature during the adsorption process. Langmuir adsorption isotherm model was found to match the experimental adsorption isotherm better. The kinetics of adsorption was modeled using a pseudo second order kinetic model and the model parameters were estimated.展开更多
The coupled effect of viscosity enhancing admixtures(VEA)and superplasticizer(SP)on the rheological behavior of cement paste was investigated in this work.Two types of VEAs,including hydroxypropyl methylcellulose(HPMC...The coupled effect of viscosity enhancing admixtures(VEA)and superplasticizer(SP)on the rheological behavior of cement paste was investigated in this work.Two types of VEAs,including hydroxypropyl methylcellulose(HPMC)and Welan gum,and two types of SPs,i.e.polycarboxylate(PCA)and polynaphthalenesulfonate(PNS)were used as admixtures for cement paste.Rheological curves of cement paste and simulated pore solution containing VEA and SP were tested.Simulated pore solution test results show that molecules of different SPs may generate different effects on the viscosity of VEA solutions.Hershel-Bulkley(H-B)model was used to fit rheological curve of cement paste.Strong interaction between PNS and HPMC was observed in this work.展开更多
Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity f...Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity for Pb2+ were examined to optimize these parameters. The optimal conditions for the preparation of AC were determined to be activation temperature of 500 °C, activation time of 1 h, impregnation ratio of 1:1(solid-to-liquid volume) with the 30% ZnCl2 solution(mass fraction), giving the BET surface area of 393.85 m2/g and yield of 30.14% with 33.45% ash. Also, the pyrolysis temperature was found to be the most important parameter in chemical activation. FTIR spectra provided the evidence of some surface structures such as C=C and C—O—C. In the adsorption studies, a rise in solution pH led to a significant increase in adsorption capacity when the pH value varied from 3.0 to 7.0, and the optimal pH for removal of Pb2+ was 7.0. It was observed that the pseudo-second-order equation provided better correlation for the adsorption rate than the pseudo-first-order and the Langmuir model fitted better than the Freundlich model for adsorption isotherm. The adsorption capacity of AC to Pb2+ was 11.75 mg/L at solution pH 7.0, the equilibrium time 480 min and 25 °C. Moreover, the adsorption process is endothermic according to the value of enthalpy change.展开更多
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas...To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.展开更多
Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation be...Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation behaviors of heavy metals(HMs)contained in raw SS is a key issue on the safety and cleanness of above liquefaction process,which is explored in this study.The results show that pure ethanol facilitates the migration of HMs into biochar products.Pure water yields lower percentages of HMs in mobile/bioavailable speciation.Compared with sole solvent treatment,ethanol-water cosolvent causes a random/average effect on the distribution/transformation behaviors of HMs.After liquefaction of SS in pure water,the contamination degree of HMs is mitigated from high level(25.8(contamination factor))in raw SS to considerable grade(13.4)in biochar and the ecological risk is mitigated from moderate risk(164.5(risk index))to low risk(78.8).Liquefaction of SS in pure ethanol makes no difference to the pollution characteristics of HMs.The combined use of ethanol and water presents similar immobilization effects on HMs to pure water treatment.The contamination factor and risk index of HMs in biochars obtained in ethanol-water cosolvent treatment are 13.1-14.6(considerable grade)and 79.3-101.0(low risk),respectively.In order to further control the pollution of HMs,it is preferentially suggested to improve the liquefaction process of SS in ethanol-water mixed solvents by introducing conventional lignocellulosic/algal biomass,also known as co-liquefaction treatment.展开更多
Through the montmorillonite settlement experiment in the clear water and electrolyte solution, the influence of slime water settling character was studied in clear water and different electrolyte solution, the montmor...Through the montmorillonite settlement experiment in the clear water and electrolyte solution, the influence of slime water settling character was studied in clear water and different electrolyte solution, the montmorillonite's hydration ex- pansion effectively restrained was verified, the process method to wash coal with the electrolyte was put forward, and the re- sults indicate that the solution of 10 g/L KC1 is optimal inhibitor on the montmorillonite in the tested three kinds of electrolyte solution. With the contrast test in clear water and electrolyte solution, two reagent adding way can be selected in KC1 solution: one way is to add PAM separately, the effectively sedimentation can be made with simply 0.1% anion; the other way is the co- ordination with polymeric aluminum and PAM, the anionic of PAM and polymeric aluminum are 0.02% and 0.5% respectively. However, in clear water, the polymeric aluminum must be joined together with the anionic PAM, and the amount of the PAM reaches 0.5%, which is 25 times as great as that in KCL solution. The field work with raw coal further verifies the above con- clusions further.展开更多
In order to simulate and study the erosion effect process such as the changes of corrosive depth and unconfined compression strength of cemented soil sample in earlier period from 0 day to 60 days, a series of tests i...In order to simulate and study the erosion effect process such as the changes of corrosive depth and unconfined compression strength of cemented soil sample in earlier period from 0 day to 60 days, a series of tests including unconfined compressive tests, measuring the blocks' sizes, and taking photos, are conducted on the cemented soil blocks which were cured in different concentrations of H2SO4 solutions. The results of tests show that the corrosive depth is increasing and the unconfined compression strength is decreasing with the increase of H2SO4 solution concentration at the same erosion time, and the corrosive degree is increasing with the corrosive time. In the earlier state, the corrosive effect is serious, but the effect becomes slow in the later state in the same concentrated H2SO4 solution. After take statistics the date, a coefficient a is put forward to predict the reduction of the compressive strength of cemented soil in various concentration of H2SO4 solution, which could be used in practical design.展开更多
Invading track of chloride ions and chloride ion distribution rule in cement-based materials were investigated by partially soaking in 3.5% (mass fraction) NaCl solution and fully immerging in 3.5% and 5.0% (mass f...Invading track of chloride ions and chloride ion distribution rule in cement-based materials were investigated by partially soaking in 3.5% (mass fraction) NaCl solution and fully immerging in 3.5% and 5.0% (mass fraction) NaC1 solution, respectively, and relevant invading mechanisms were discussed. Results indicate that under full immerging condition, the invading track of chloride ions in cement mortar is similar to beeline that is vertical to chloride ion invading direction, and chloride ion content decreases rapidly with the increase of chloride ion invading depth. Under partial soaking condition, the invading track of chloride ion in cement mortar is similar to the shape of concave parabola, and chloride ion content decreases slowly along the lengthway direction of cement mortar samples in the distance of 20-80 mm from the bottom. Lots of chloride ions accumulate in cement mortar surface layer under the effect of capillary rise and evaporation and then invade cement mortar by diffusion effect. Under partial soaking condition, cement mortar is distinguished by four areas, i.e., immerging area, wet area, crystallization area and dry area.展开更多
This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement pa...This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement paste. Reactive aggregates use meta-sandstone from eastern Taiwan and Pyrex glass. Non-reactive aggregates use siliceous sand. The results show that the dissolved amount of SiO2 is lower when the reactive aggregates are immersed in an 80 ℃1 N LiOH'H20 solution than in NaOH and KOH solutions. The reduced amounts of OH and Li+ in the solution are also higher than those in the NaOH and KOH solutions. These results reveal that reactive SiO2 can react with LiOH to form a reactant with low water solubility. When the powder of the cement paste is immersed in an 80 ℃ 1 N LiOH-H2O solution, the amounts of free Na+ and K+ in the solution are higher than those in water. The increased amount increases with the duration of immersion. The amount of Li+ in the solution also decreases with the duration of immersion. These results reveal that Li+ can substitute Na+ and K+ that are unified in cement paste, which indicates that ASR can be prevented with the existence of Li+.展开更多
In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected ...In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatin composite increased to 5.12 MPa,around 50 times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this study might be a potential scaffold for bone tissue engineering.展开更多
The changes of free solution amount, fluidity and the time-depended fluidity loss of cement paste were examined by varying the water-cement ratio and the dosages of superplasticizer. The distribution of solution and f...The changes of free solution amount, fluidity and the time-depended fluidity loss of cement paste were examined by varying the water-cement ratio and the dosages of superplasticizer. The distribution of solution and flocculation microstructure in flesh cement paste was observed with optical microscope. The change of free solution amount and its effect on the fluidity and bleeding of cement paste was studied. The results show that the adsorbed solution amount has a great influence on the com- patibility of cement-superplasticizer system, including the bleeding degree, the fluidity and the time-depended fluidity loss of cement paste. Superplasticizer increases the fluidity of cement paste by destroying the flocculated cement particle structure and increasing the amount of adsorbed solution. Polycarboxylate superplasticizer shows higher ability of adsorption than naphtha- lene superplasticizer. Over dosage of superplasticizer is not the primary cause of bleeding. The principle reason of bleeding is the high water-cement ratio and the insufficient enhancing ability of water adsorption of superplasticizer.展开更多
基金Project (51264022) supported by the National Natural Science Foundation of China
文摘A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mixed up with cement at different mass fractions of 2%-8% and their properties were investigated. Based on the textural characteristics and strength, the granular red mud with 2% addition of cement maintaining for 6 d is identified to have better properties. The batch adsorption experiments for adsorption of Cd2+ ions from solution were performed at 30, 40 and 50 °C at different initial concentrations under the condition of constant pH of 6.5. The equilibrium adsorption was found to increase with the increase of temperature during the adsorption process. Langmuir adsorption isotherm model was found to match the experimental adsorption isotherm better. The kinetics of adsorption was modeled using a pseudo second order kinetic model and the model parameters were estimated.
基金Project(2017YFB0310101)supported by National High Technology Research and Development Program of ChinaProject(51778269)supported by the National Natural Science Foundation of China
文摘The coupled effect of viscosity enhancing admixtures(VEA)and superplasticizer(SP)on the rheological behavior of cement paste was investigated in this work.Two types of VEAs,including hydroxypropyl methylcellulose(HPMC)and Welan gum,and two types of SPs,i.e.polycarboxylate(PCA)and polynaphthalenesulfonate(PNS)were used as admixtures for cement paste.Rheological curves of cement paste and simulated pore solution containing VEA and SP were tested.Simulated pore solution test results show that molecules of different SPs may generate different effects on the viscosity of VEA solutions.Hershel-Bulkley(H-B)model was used to fit rheological curve of cement paste.Strong interaction between PNS and HPMC was observed in this work.
基金Project supported by the Open Fund of State Key Laboratory of Photocatalysis,China
文摘Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity for Pb2+ were examined to optimize these parameters. The optimal conditions for the preparation of AC were determined to be activation temperature of 500 °C, activation time of 1 h, impregnation ratio of 1:1(solid-to-liquid volume) with the 30% ZnCl2 solution(mass fraction), giving the BET surface area of 393.85 m2/g and yield of 30.14% with 33.45% ash. Also, the pyrolysis temperature was found to be the most important parameter in chemical activation. FTIR spectra provided the evidence of some surface structures such as C=C and C—O—C. In the adsorption studies, a rise in solution pH led to a significant increase in adsorption capacity when the pH value varied from 3.0 to 7.0, and the optimal pH for removal of Pb2+ was 7.0. It was observed that the pseudo-second-order equation provided better correlation for the adsorption rate than the pseudo-first-order and the Langmuir model fitted better than the Freundlich model for adsorption isotherm. The adsorption capacity of AC to Pb2+ was 11.75 mg/L at solution pH 7.0, the equilibrium time 480 min and 25 °C. Moreover, the adsorption process is endothermic according to the value of enthalpy change.
基金Project(LY13E080021) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2011A610072) supported by the Ningbo Municipal Natural Science Foundation,ChinaProject(XKL14D2063) supported by Subject Program of Ningbo University,China
文摘To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.
基金Project(21707056) supported by the National Natural Science Foundation of ChinaProject(20151BAB213024) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ14302) supported by the Scientific Research Fund of Jiangxi Provincial Education Department,China
文摘Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation behaviors of heavy metals(HMs)contained in raw SS is a key issue on the safety and cleanness of above liquefaction process,which is explored in this study.The results show that pure ethanol facilitates the migration of HMs into biochar products.Pure water yields lower percentages of HMs in mobile/bioavailable speciation.Compared with sole solvent treatment,ethanol-water cosolvent causes a random/average effect on the distribution/transformation behaviors of HMs.After liquefaction of SS in pure water,the contamination degree of HMs is mitigated from high level(25.8(contamination factor))in raw SS to considerable grade(13.4)in biochar and the ecological risk is mitigated from moderate risk(164.5(risk index))to low risk(78.8).Liquefaction of SS in pure ethanol makes no difference to the pollution characteristics of HMs.The combined use of ethanol and water presents similar immobilization effects on HMs to pure water treatment.The contamination factor and risk index of HMs in biochars obtained in ethanol-water cosolvent treatment are 13.1-14.6(considerable grade)and 79.3-101.0(low risk),respectively.In order to further control the pollution of HMs,it is preferentially suggested to improve the liquefaction process of SS in ethanol-water mixed solvents by introducing conventional lignocellulosic/algal biomass,also known as co-liquefaction treatment.
基金Supported by the National Natural Science Foundation of China (51204190, 51274208) the Youth Fund of China University of Mining and Technology (Beijing) (2009QH04)
文摘Through the montmorillonite settlement experiment in the clear water and electrolyte solution, the influence of slime water settling character was studied in clear water and different electrolyte solution, the montmorillonite's hydration ex- pansion effectively restrained was verified, the process method to wash coal with the electrolyte was put forward, and the re- sults indicate that the solution of 10 g/L KC1 is optimal inhibitor on the montmorillonite in the tested three kinds of electrolyte solution. With the contrast test in clear water and electrolyte solution, two reagent adding way can be selected in KC1 solution: one way is to add PAM separately, the effectively sedimentation can be made with simply 0.1% anion; the other way is the co- ordination with polymeric aluminum and PAM, the anionic of PAM and polymeric aluminum are 0.02% and 0.5% respectively. However, in clear water, the polymeric aluminum must be joined together with the anionic PAM, and the amount of the PAM reaches 0.5%, which is 25 times as great as that in KCL solution. The field work with raw coal further verifies the above con- clusions further.
文摘In order to simulate and study the erosion effect process such as the changes of corrosive depth and unconfined compression strength of cemented soil sample in earlier period from 0 day to 60 days, a series of tests including unconfined compressive tests, measuring the blocks' sizes, and taking photos, are conducted on the cemented soil blocks which were cured in different concentrations of H2SO4 solutions. The results of tests show that the corrosive depth is increasing and the unconfined compression strength is decreasing with the increase of H2SO4 solution concentration at the same erosion time, and the corrosive degree is increasing with the corrosive time. In the earlier state, the corrosive effect is serious, but the effect becomes slow in the later state in the same concentrated H2SO4 solution. After take statistics the date, a coefficient a is put forward to predict the reduction of the compressive strength of cemented soil in various concentration of H2SO4 solution, which could be used in practical design.
基金Project(50678174) supported by the National Natural Science Foundation of China
文摘Invading track of chloride ions and chloride ion distribution rule in cement-based materials were investigated by partially soaking in 3.5% (mass fraction) NaCl solution and fully immerging in 3.5% and 5.0% (mass fraction) NaC1 solution, respectively, and relevant invading mechanisms were discussed. Results indicate that under full immerging condition, the invading track of chloride ions in cement mortar is similar to beeline that is vertical to chloride ion invading direction, and chloride ion content decreases rapidly with the increase of chloride ion invading depth. Under partial soaking condition, the invading track of chloride ion in cement mortar is similar to the shape of concave parabola, and chloride ion content decreases slowly along the lengthway direction of cement mortar samples in the distance of 20-80 mm from the bottom. Lots of chloride ions accumulate in cement mortar surface layer under the effect of capillary rise and evaporation and then invade cement mortar by diffusion effect. Under partial soaking condition, cement mortar is distinguished by four areas, i.e., immerging area, wet area, crystallization area and dry area.
文摘This paper studies the reaction between alkaline metal ions Li+, Na+ and K+ and ASR (alkali-silica reaction) reactive aggregates to determine whether Li+ can substitute Na+ and K+ that are unified in cement paste. Reactive aggregates use meta-sandstone from eastern Taiwan and Pyrex glass. Non-reactive aggregates use siliceous sand. The results show that the dissolved amount of SiO2 is lower when the reactive aggregates are immersed in an 80 ℃1 N LiOH'H20 solution than in NaOH and KOH solutions. The reduced amounts of OH and Li+ in the solution are also higher than those in the NaOH and KOH solutions. These results reveal that reactive SiO2 can react with LiOH to form a reactant with low water solubility. When the powder of the cement paste is immersed in an 80 ℃ 1 N LiOH-H2O solution, the amounts of free Na+ and K+ in the solution are higher than those in water. The increased amount increases with the duration of immersion. The amount of Li+ in the solution also decreases with the duration of immersion. These results reveal that Li+ can substitute Na+ and K+ that are unified in cement paste, which indicates that ASR can be prevented with the existence of Li+.
基金National Natural Science Foundation of Chinagrant number:50772037 and 50732003+1 种基金Science and Technology Program ofGuangdong Province of Chinagrant number:2008A030102008
文摘In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatin composite increased to 5.12 MPa,around 50 times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this study might be a potential scaffold for bone tissue engineering.
基金supported by the National Natural Science Foundation of China (Grant No.50772053)
文摘The changes of free solution amount, fluidity and the time-depended fluidity loss of cement paste were examined by varying the water-cement ratio and the dosages of superplasticizer. The distribution of solution and flocculation microstructure in flesh cement paste was observed with optical microscope. The change of free solution amount and its effect on the fluidity and bleeding of cement paste was studied. The results show that the adsorbed solution amount has a great influence on the com- patibility of cement-superplasticizer system, including the bleeding degree, the fluidity and the time-depended fluidity loss of cement paste. Superplasticizer increases the fluidity of cement paste by destroying the flocculated cement particle structure and increasing the amount of adsorbed solution. Polycarboxylate superplasticizer shows higher ability of adsorption than naphtha- lene superplasticizer. Over dosage of superplasticizer is not the primary cause of bleeding. The principle reason of bleeding is the high water-cement ratio and the insufficient enhancing ability of water adsorption of superplasticizer.