期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
水泥-土基植生固沙材料水、肥释放特征研究 被引量:3
1
作者 曲烈 乐俐 +1 位作者 杨久俊 赵素宁 《水土保持学报》 CSCD 北大核心 2010年第1期181-185,共5页
采用沙柱淋出法研究了控释肥、吸水剂和水泥掺量对植生固沙材料NPK释放规律和保水性的影响。结果表明,因NPK的溶解度不同对照组和实验组养分累计淋出率顺序均为N>K>P;与对照组相比,实验组掺撒可力肥128d的N素累计淋出率均高于对... 采用沙柱淋出法研究了控释肥、吸水剂和水泥掺量对植生固沙材料NPK释放规律和保水性的影响。结果表明,因NPK的溶解度不同对照组和实验组养分累计淋出率顺序均为N>K>P;与对照组相比,实验组掺撒可力肥128d的N素累计淋出率均高于对照组。两种肥料相比,因撒可力肥芯有吸水性故其NPK控释能力优于Osmocote;不同肥料、吸水剂和水泥掺量相比,养分控释能力较优的是掺撒可力肥、SAP1和10%水泥/土比这组配方;保水性较优的是掺撒可力肥、SAP1和30%水泥/土比这组配方。固沙材料中N素累计淋出率曲线为"S"型和P、K为"L"型;N素淋出率曲线为"多峰"型和P、K为"单峰"型,多峰现象可解释为磷素对固沙材料中水泥和土固化作用-部分减少了控释肥薄膜溶胀破裂行为。 展开更多
关键词 水泥-土基 植生固沙材料 控释肥 吸水剂 释放速度
下载PDF
Simplified method for predicating consolidation settlement of soft ground improved by floating soil-cement column 被引量:12
2
作者 龚晓南 田效军 胡文韬 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2699-2706,共8页
A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consol... A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consolidation model and equal strain assumption, the governing equation was derived for the consolidation of clayey subsoil reinforced by soil-cement column. By modifying the boundary condition of the interface between the improved layer and underlying layer on seepage and pore-water pressure, the analytical solution of consolidation of soft ground improved by floating soil-cement column was developed under depth-dependent ramp load. The results of the parameter analysis of consolidation behavior show that the consolidation rate is closely related with the depth replacement ratio by the column and the permeability of upper layer. The influence of column-soil constrained modulus ratio and radius ratio of the influence zone to the column on consolidation is also affected by depth replacement ratio. The column-soil total stress ratio increases with time and approaches the final value accompanied with the dissipation of excess pore water pressure. 展开更多
关键词 axisymmetric consolidation model floating soil-cement column consolidation depth-dependent ramp load analytical solution
下载PDF
Flexural response of reinforced concrete beams strengthened with post-poured ultra high toughness cementitious composites layer 被引量:6
3
作者 王楠 徐世烺 《Journal of Central South University》 SCIE EI CAS 2011年第3期932-939,共8页
Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHT... Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation. 展开更多
关键词 ultra high toughness cementitious composities strengthening beams flexural behavior post-poured layer
下载PDF
Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading 被引量:8
4
作者 Pan Jinlong Mo Chuang +1 位作者 Xu Li Chen Junhan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期70-78,共9页
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col... To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures. 展开更多
关键词 engineered cementitious composites ECC) ECC/RC composite columns hysteretic curves DUCTILITY energy dissipation parametric analysis
下载PDF
Preparation and microstructure characterization of poly-sialate-disiloxo type of geopolymeric cement
5
作者 张云升 孙伟 李宗津 《Journal of Central South University》 SCIE EI CAS 2009年第6期906-913,共8页
In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matri... In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral. 展开更多
关键词 geopolymeric cement poly-sialate-disiloxo PREPARATION MICROSTRUCTURE
下载PDF
Flexural behaviors of steel reinforced ECC/concrete composite beams 被引量:8
6
作者 董洛廷 潘金龙 +1 位作者 袁方 梁坚凝 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期195-202,共8页
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas... An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value. 展开更多
关键词 engineered cementitious composites (ECC) reinforced concrete composite beam flexural properties load carrying capacity
下载PDF
Experimental study on improving collapsible loess with cement 被引量:2
7
作者 SHAN Bo WANG Changming +3 位作者 DONG Quanyang TANG Ling ZHANG Guangyi WEI Jiaming 《Global Geology》 2010年第2期79-84,共6页
The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation ... The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation design in collapsible loess zone. Selecting collapsible loess from Fuxin-Chaoyang highway in Liaoning, the authors conducted a series of tests for improving loess with cement. The loess in different water content was mixed with the cement in varying proportions, unconfined compression strength for the samples at four different curing periods were tested, and the relationships of improved soil strength among cement mixture ratio and curing periods were analyzed. When the curing periods are certain, the strength of loess increases along with the mixture ratio increases; when the cement mixture ratio is 5%-15%, the scope of increases is quite obvious; when the mixture ratio is greater than 15%, the tendency of intensity increases turns slow. When the mixture ratio for the specimen is certain, the intensity of the test specimen increases along with the curing period increases, the intensity grows obviously in 28 days, and the growth rate is small in 28-90 days, the intensity tends to be steady in the curing period of 90 days. 展开更多
关键词 collapsible loess CEMENT unconfined compression strength
下载PDF
Seismic behavior of precast concrete coupled shear walls with engineered cementitious composite (ECC) in the critical cast-in-place regions 被引量:6
8
作者 YANG Jian LIANG ShuTing +2 位作者 ZHU XiaoJun SUN ChongFang GUO ZhengXing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第8期1244-1254,共11页
The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study inv... The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls. 展开更多
关键词 seismic behavior precast coupled shear walls engineered cementitious composite (ECC) composite coupling beams reversed cyclic loading
原文传递
Effects of nanoclay addition on the permeability and mechanical properties of ultra high toughness cementitious composites 被引量:2
9
作者 Min-jia WANG He-dong LI +2 位作者 Qiang ZENG Qing-fen CHANG Xiu-shan WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第12期992-1007,共16页
Tuning microstructures by adding nanoparticles is a promising way of improving the performance of cementitious composites.In this study,nanoclay was introduced to polyvinyl alcohol(PVA)fiber reinforced ultra high toug... Tuning microstructures by adding nanoparticles is a promising way of improving the performance of cementitious composites.In this study,nanoclay was introduced to polyvinyl alcohol(PVA)fiber reinforced ultra high toughness cementitious composites(UHTCCs).The mechanical properties,crack patterns,water permeation resistance,and microstructures of UHTCCs with different dosages of nanoclay were studied.The addition of a proper dosage of nanoclay shows few effects on the compressive strength of UHTCCs,however,the compressive strength is decreased when an excessive amount of nanoclay is added.The flexural deformation capacity of UHTCCs is independent of nanoclay dosage,whereas the flexural strength generally decreases with an increasing dosage of nanoclay.Different cracking patterns were observed in the ultra high toughness cementitious composites containing nanoclay(NC-UHTCC)specimens subject to bending tests.A UHTCC with 1%(in weight)nanoclay shows the best water permeation resistance and the lowest water permeability.Variations in the mechanical properties and the water permeation resistance of UHTCCs containing different dosages of nanoclay could be ascribed to the synthetic effects of filling and heterogeneous nucleation of nanoclay at low dosages and the agglomeration effect of nanoclay at high dosages.This study is to optimize the water permeation resistance of UHTCCs,paving a path for the future application of UHTCCs in the fields of construction,decoration,and repair. 展开更多
关键词 NANOCLAY Water permeability Pore structure Cementitious composites Strain hardening
原文传递
Numerical study on flexural behaviors of steel reinforced engineered cementitious composite(ECC) and ECC/concrete composite beams 被引量:13
10
作者 YUAN Fang PAN JinLong WU YuFei 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第3期637-645,共9页
Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely red... Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated. 展开更多
关键词 engineered cementitious composite(ECC) constitutive model flexural behavior finite element
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部