A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consol...A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consolidation model and equal strain assumption, the governing equation was derived for the consolidation of clayey subsoil reinforced by soil-cement column. By modifying the boundary condition of the interface between the improved layer and underlying layer on seepage and pore-water pressure, the analytical solution of consolidation of soft ground improved by floating soil-cement column was developed under depth-dependent ramp load. The results of the parameter analysis of consolidation behavior show that the consolidation rate is closely related with the depth replacement ratio by the column and the permeability of upper layer. The influence of column-soil constrained modulus ratio and radius ratio of the influence zone to the column on consolidation is also affected by depth replacement ratio. The column-soil total stress ratio increases with time and approaches the final value accompanied with the dissipation of excess pore water pressure.展开更多
Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHT...Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation.展开更多
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col...To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures.展开更多
In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matri...In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.展开更多
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas...An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.展开更多
The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation ...The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation design in collapsible loess zone. Selecting collapsible loess from Fuxin-Chaoyang highway in Liaoning, the authors conducted a series of tests for improving loess with cement. The loess in different water content was mixed with the cement in varying proportions, unconfined compression strength for the samples at four different curing periods were tested, and the relationships of improved soil strength among cement mixture ratio and curing periods were analyzed. When the curing periods are certain, the strength of loess increases along with the mixture ratio increases; when the cement mixture ratio is 5%-15%, the scope of increases is quite obvious; when the mixture ratio is greater than 15%, the tendency of intensity increases turns slow. When the mixture ratio for the specimen is certain, the intensity of the test specimen increases along with the curing period increases, the intensity grows obviously in 28 days, and the growth rate is small in 28-90 days, the intensity tends to be steady in the curing period of 90 days.展开更多
The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study inv...The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.展开更多
Tuning microstructures by adding nanoparticles is a promising way of improving the performance of cementitious composites.In this study,nanoclay was introduced to polyvinyl alcohol(PVA)fiber reinforced ultra high toug...Tuning microstructures by adding nanoparticles is a promising way of improving the performance of cementitious composites.In this study,nanoclay was introduced to polyvinyl alcohol(PVA)fiber reinforced ultra high toughness cementitious composites(UHTCCs).The mechanical properties,crack patterns,water permeation resistance,and microstructures of UHTCCs with different dosages of nanoclay were studied.The addition of a proper dosage of nanoclay shows few effects on the compressive strength of UHTCCs,however,the compressive strength is decreased when an excessive amount of nanoclay is added.The flexural deformation capacity of UHTCCs is independent of nanoclay dosage,whereas the flexural strength generally decreases with an increasing dosage of nanoclay.Different cracking patterns were observed in the ultra high toughness cementitious composites containing nanoclay(NC-UHTCC)specimens subject to bending tests.A UHTCC with 1%(in weight)nanoclay shows the best water permeation resistance and the lowest water permeability.Variations in the mechanical properties and the water permeation resistance of UHTCCs containing different dosages of nanoclay could be ascribed to the synthetic effects of filling and heterogeneous nucleation of nanoclay at low dosages and the agglomeration effect of nanoclay at high dosages.This study is to optimize the water permeation resistance of UHTCCs,paving a path for the future application of UHTCCs in the fields of construction,decoration,and repair.展开更多
Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely red...Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.展开更多
基金Project(51278450)supported by the National Natural Science Foundation of China
文摘A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consolidation model and equal strain assumption, the governing equation was derived for the consolidation of clayey subsoil reinforced by soil-cement column. By modifying the boundary condition of the interface between the improved layer and underlying layer on seepage and pore-water pressure, the analytical solution of consolidation of soft ground improved by floating soil-cement column was developed under depth-dependent ramp load. The results of the parameter analysis of consolidation behavior show that the consolidation rate is closely related with the depth replacement ratio by the column and the permeability of upper layer. The influence of column-soil constrained modulus ratio and radius ratio of the influence zone to the column on consolidation is also affected by depth replacement ratio. The column-soil total stress ratio increases with time and approaches the final value accompanied with the dissipation of excess pore water pressure.
基金Project(50438010) supported by the National Natural Science Foundation of China
文摘Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation.
基金The National Natural Science Foundation of China(No.51278118)the Natural Science Foundation of Jiangsu Province(No.BK2012756)+1 种基金the Key Project of Ministry of Education of China(No.113029A)the Third Five-Year Major Scientific and Technological Project of China Metallurgical Group Corporation
文摘To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures.
基金Project(2009CB623200) supported by the National Basic Research Program of ChinaProjects(50702014, 50878043) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0116) supported by the Program for New Century Excellent Talents in University of Ministry of Education, China
文摘In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.
基金The National Natural Science Foundation of China(No. 50808043)the National Basic Research Program of China (973 Program) (No. 2009CB623200)Foundation of Jiangsu Key Laboratory of Construction Materials,Program for Special Talents in Six Fields of Jiangsu Province(No. 2011-JZ-010)
文摘An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.
基金Project supported by Natural Science Foundation of China (No. 40972171)
文摘The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation design in collapsible loess zone. Selecting collapsible loess from Fuxin-Chaoyang highway in Liaoning, the authors conducted a series of tests for improving loess with cement. The loess in different water content was mixed with the cement in varying proportions, unconfined compression strength for the samples at four different curing periods were tested, and the relationships of improved soil strength among cement mixture ratio and curing periods were analyzed. When the curing periods are certain, the strength of loess increases along with the mixture ratio increases; when the cement mixture ratio is 5%-15%, the scope of increases is quite obvious; when the mixture ratio is greater than 15%, the tendency of intensity increases turns slow. When the mixture ratio for the specimen is certain, the intensity of the test specimen increases along with the curing period increases, the intensity grows obviously in 28 days, and the growth rate is small in 28-90 days, the intensity tends to be steady in the curing period of 90 days.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0701703)the Fundamental Research Funds for the Central Universities+1 种基金Project Supported by the Research and Innovation Program for Graduate Students in Jiangsu(Grant No.KYLX16_0257)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.CE02-2-47)
文摘The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.
基金Project supported by the National Natural Science Foundation of China(No.51978624)the Zhejiang Provincial Natural Science Foundation of China(No.LY19E080030)+3 种基金the Production and Construction Group’s Programs for Science and Technology Development(No.2019AB016)the Zhejiang Cultural Relics Protection Science and Technology Project(No.2014009)the 2017 Hangzhou Transportation Society Scientific Research Project(No.14)the First-class Disciplines Project of Civil Engineering in Zhejiang Province,China。
文摘Tuning microstructures by adding nanoparticles is a promising way of improving the performance of cementitious composites.In this study,nanoclay was introduced to polyvinyl alcohol(PVA)fiber reinforced ultra high toughness cementitious composites(UHTCCs).The mechanical properties,crack patterns,water permeation resistance,and microstructures of UHTCCs with different dosages of nanoclay were studied.The addition of a proper dosage of nanoclay shows few effects on the compressive strength of UHTCCs,however,the compressive strength is decreased when an excessive amount of nanoclay is added.The flexural deformation capacity of UHTCCs is independent of nanoclay dosage,whereas the flexural strength generally decreases with an increasing dosage of nanoclay.Different cracking patterns were observed in the ultra high toughness cementitious composites containing nanoclay(NC-UHTCC)specimens subject to bending tests.A UHTCC with 1%(in weight)nanoclay shows the best water permeation resistance and the lowest water permeability.Variations in the mechanical properties and the water permeation resistance of UHTCCs containing different dosages of nanoclay could be ascribed to the synthetic effects of filling and heterogeneous nucleation of nanoclay at low dosages and the agglomeration effect of nanoclay at high dosages.This study is to optimize the water permeation resistance of UHTCCs,paving a path for the future application of UHTCCs in the fields of construction,decoration,and repair.
基金supported by the National Natural Science Foundation of China(Grant No.51278118)Natural Science Foundation of Jiangsu Province(Grant No.BK2012756)+1 种基金Scientific Research Project of Ministry of Education of China(Grant No.113029A)Program for Special Talents in Six Fields of Jiangsu Province(Grant No.2011JZ010)
文摘Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.