In order to examine the effects of the decrease of future precipitation on the eco-physiological characteristics of sea buckthorn (Hippophae rhamnoides Linn.) in Huangfuchuan Watershed in Nei Mongol, a water gradient ...In order to examine the effects of the decrease of future precipitation on the eco-physiological characteristics of sea buckthorn (Hippophae rhamnoides Linn.) in Huangfuchuan Watershed in Nei Mongol, a water gradient experiment was conducted based on the four specially designed water supply levels, including normal precipitation, slight drought, drought and extreme drought. Results of ANOVE showed that different water gradients had a significant effect on (1) microhabitat factors, such as soil water content and soil temperature; (2) gas exchange, such as net photosynthetic rate, stomatal conductance and transpiration rate; (3) resource use efficiency; and (4) leaf water potential. Water use efficiency of H rhamnoides could increase under moderate water stress, i.e. drought condition, while its net photosynthetic rate and transpiration rate decreased. All kinds of eco-physiological characteristics proved H. rhamnoides seedlings under all water supplies were affected by water stress more or less and that mechanism of intrinsic physiological regulation in seedlings under the extreme drought conditions had the appearance of turbulence to a certain extent. Therefore, H rhamnoides seedlings in Huangfuchuan Watershed could not acclimate to extreme drought conditions.展开更多
Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or...Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.展开更多
Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great si...Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great significance to regional water resources planning and management. In this study, the impact of climate changes and human activities was initially qualitatively distinguished through a coupled water and energy budgets analysis, and then this effect was further separated by means of a quantitative estimation based on hydrological sensitivity analysis. The results show that: 1) precipitation, wind speed, potential evapotranspiration and runoff have a significantly decreasing trend, while temperature has a remarkably increasing tendency in the Weihe River Basin, China; 2) the major driving factor on runoff decrease in the 1970 s and 1990 s in the basin is climate changes compared with that in the baseline 1960 s, while that in the 1980 s and 2000 s is human activities. Compared with the results based on Variable Infiltration Capacity(VIC) model, the contributions calculated in this study have certain reliability. The results are of great significance to local water resources planning and management.展开更多
Water management in general and in the Indus Basin in particular is concerned with the energy-efficient transportation of hydrologically exploitable resources from the upper zone to climatically favourable areas where...Water management in general and in the Indus Basin in particular is concerned with the energy-efficient transportation of hydrologically exploitable resources from the upper zone to climatically favourable areas where irrigation helps to supersede arid conditions for the cultivation of crops and watering of meadows.In other words:Human intervention sets the stage for the allocation of water from a wider catchment area in a smaller habitat where this resource is deficient.Emphasis on mountain irrigation practices is counteracted with developments in the forelands where different frame conditions prevail and peculiar development problems occur.In dealing with the importance of water from the mountain regions three dimensions have to be evaluated:1) natural factors and their validity for the environmental frame conditions and technological adaptation processes;2) social factors and their impact on culture,economy and equitability;3) institutional factors and their importance for sustainable growth and for the implementation of development projects.In the study of decentralized irrigation systems in high mountain regions of the Indus Basin a systems theoretical approach values the complexity of interrelationships between different systems elements.Human activities in arid mountain regions are restricted by limiting ecological factors and are characterized by certain utilization and adaptive strategies.展开更多
The main goal of this study was to assess the long-term impacts of global warming perturbation on water resources of the Kaidu River Basin in Northwest China. Temperature, precipitation and hydrology data during the p...The main goal of this study was to assess the long-term impacts of global warming perturbation on water resources of the Kaidu River Basin in Northwest China. Temperature, precipitation and hydrology data during the past 29 years from 1979 to 2007 were collected and analyzed using parametric and non-parametric methods, the connection between temperature and precipitation by the combination of grey correlation analysis method and the hypothesis testing for trend of climate change. The results show a high increase in temperature in the study area as well as an extreme and highly variable hydrological regime in this region, where flash floods can exceed the total runoff from a sequence of years. These variations may be due to the geographical location of the Kaidu River Basin in arid zone. It also reveals that precipitation has a much greater impact on stream flow than that of temperature. The development of new approaches was proposed as responses to climate change in this arid region.展开更多
Diyala River is the third largest tributary of the Tigris River running 445 km length and draining an area of 32,600 km2. The river is the major source of water supply for Diyala City for municipal, domestic, agricult...Diyala River is the third largest tributary of the Tigris River running 445 km length and draining an area of 32,600 km2. The river is the major source of water supply for Diyala City for municipal, domestic, agriculture and other purposes. Diyala River Basin currently is suffering from water scarcity and contamination problems. Up-to-date studies have shown that blue and green waters of a basin have been demonstrating increasing variability contributing to more severe droughts and floods seemingly due to climate change. To obtain better understanding of the impacts of climate change on water resources in Diyala River Basin in near 2046-2064 and distant future 2080~2100, SWAT (soil and water assessment tool) was used. The model is first examined for its capability of capturing the basin characteristics, and then, projections from six GCMs (general circulation models) are incorporated to assess the impacts of climate change on water resources under three emission scenarios: A2, AIB and B1. The results showed deteriorating water resources regime into the future.展开更多
Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Spec...Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.展开更多
For sustainable water resource management,it is important to determine the relationship between streamfl ow and other variables that infl uence availability of water resources.However,many catchments do not have suffi...For sustainable water resource management,it is important to determine the relationship between streamfl ow and other variables that infl uence availability of water resources.However,many catchments do not have suffi cient data to allow for a more detailed study of these relationships.We faced a similar challenge in the Chengcun Basin(limited historical data: from 1986–1999); and therefore we used a new approach to overcome this.We found that,using nonparametric trend methods in conjunction with the climate elasticity analyses and the 2D visualization of hydrologic data,it is possible to assess the relationships between streamfl ow and other hydro-climatic variables.In the past,streamfl ow trends in the basin were more correlated with precipitation than with potential evapotranspiration(PET).In addition,there is a gradual shift in the hydrological regime of the catchment,which may affect the occurrence of available water resources and activities that depend on them.In addition,based on our climate sensitivity analyses,the streamfl ow is dependent and more sensitive to variations in precipitation than to PET(δQ=0.79δP+0.42δE; precipitation elasticity,ε P=1.32; PET elasticity,ε E=-2.10).Therefore pending more detailed studies,the use of our approach will provide a rapid means to assess the variation of water resources(streamfl ow)in a watershed.In the future,we hope to carry out related research in other watersheds and also perform a more detailed studies to improve upon the results of this study.展开更多
The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled so...The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled soil moisture and runoff with limited observations in the basin suggests a general drying trend in simulated soil moisture,runoff,and precipitation-evaporation balance(P-E) in most areas of the Yellow River basin during the observation period.Furthermore,annual soil moisture,runoff,and P-E averaged over the entire basin have declined by 3.3%,82.2%,and 32.1%,respectively.Significant drying trends in soil moisture appear in the upper and middle reaches of the basin,whereas a significant trend in declining surface runoff and P-E occurred in the middle reaches and the southeastern part of the upper reaches.The overall decreasing water availability is characterized by large spatial and temporal variability.展开更多
Presently concepts and methods related to water resources conservation of mountain rivers are seriously insufficient,and its level is far from being adaptable to the development of a harmonious society.As mountain eco...Presently concepts and methods related to water resources conservation of mountain rivers are seriously insufficient,and its level is far from being adaptable to the development of a harmonious society.As mountain ecosystems play a key role in water resources conservation of mountain rivers,and the characteristics of mountain ecosystems and hydrologic features of mountain river follow strong temporal and spatial distribution,partition theory can be applied to the water resources conservation of mountain river.This theory observes the following partition principles:regional relativity,spatial continuity,integralcounty,meeting management needs,hierarchical principle,and comparability principle.And it lays equal emphasis on both water resources conservation and environmental protection,on both water quality conservation and water quantity protection,on the combination of water features,water cycle and water pollution.In the partition methods,index method and map superposition method will be applied in region partition.The example of region partition of water resources conservation in the upper reaches of the Yangtze River shows that the partition theory is practicable in water resources conservation of mountain rivers,and it provides a platform for future study in water resources conservation.展开更多
Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy s...Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy social and political demands through the construction of dams and irrigation systems. The reduction in freshwater quantity and the deterioration of water quality are the outcome of industrial inflows, agriculture and urban untreated wastewater. This study has been leaded to determine hydrological, water quality, seed bioassays and the lake fisheries' decreases throughout its historical tendencies (1980-2004) in relation to changes in water levels. Hydrological data and water samples for chemical analysis, inorganic nutrients and seed bioassay, were taken from 10 sites alongside the river and two sites from Lake Chapala in years 2005 and 2009, the WQINsF (National Sanitation Foundation Water Quality Index) was estimated. The dissolved oxygen along the river was from anoxic (0.4) to 7 mg/L and the lake had 6.75 mg/L to 7.36 mg/L; the river had highest nutrients variations, Ntot and Ptot 1 mg/L to 〉 10 mg/L. The lake had few physicochemical variations and the lowest nutrient concentrations; WQINsF (water quality index) in the river-lake system showed very bad-bad quality and contamination in river, bad quality-light contamination in lake. Seed bioassays showed inhibition of root elongation and declining fisheries when low water levels were presented. Chapala Lake had better physicochemical and limnological conditions because of the wind action and water column mixing; in contrast the river, high hidrological variations caused by water administration in middle basin.展开更多
The Upper Blue Nile Basin, the highest sources of the Nile River flow through this area, is still under severe land degradation, which aggravates water scarcity. The productivity of subsistence farming is below 50% of...The Upper Blue Nile Basin, the highest sources of the Nile River flow through this area, is still under severe land degradation, which aggravates water scarcity. The productivity of subsistence farming is below 50% of the potential of agriculture, mainly because of inappropriate rainwater management. At farm level, rainwater is exposed to poor partitioning described as flooding, land degradation, siltation and water scarcity for domestic, irrigation, hydropower and environmental uses in the basin. Hence, it is one of the root causes of food-insecurity in the region. To reverse this situation and achieve increased rainwater productivity knowledge of rainfall partitioning at grassroots level is significantly important. However, rainwater partitioning and partitioning points are not clearly known by farmers in the area. Besides, understanding water-routes helps to manage rainwater with integrated water resources management (IWRM) processes. The objective of this study was to identify the knowledge gap of farmers and experts on rainwater partitioning that help for increased water productivity. Intensive monitoring and interviews have been carried out for 81 farmers and 22 local experts in three pilot sites. The interviewed farmers and experts are clearly aware of the runoff partitioning, since it is easily observable. While, only 10% of the farmers and 25% of experts know about evaporation partitioning, which is the largest compared to other losses. The paper gives recommendations for better understanding of rainfall partitioning points and management of water-routes at grassroots level to increase rainwater productivity and enhance food security in the area with IWRM processes.展开更多
The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and gro...The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and groundwater". Case study: Ma river basin in Vietnam. The results were implemented: (i) data collection, fieldwork survey, synthesis and analysis of information and data; (ii) partitioning the influence degree of climate change and sea level rise to groundwater; (iii) determining criteria to select monitoring routes, location of monitoring groundwater in the condition of climate change and sea level rise and (iv) developing the monitoring system. The research's results have practical implications for the water resources management in the context of climate change and sea level rise in Ma river basin.展开更多
An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of ...An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of blue and green waters which could be due to climate change. In order to get a better understanding of the impacts of climate change on the water resources of the study area for near future as well as distant future, SWAT (soil and water assessment tool) model was applied. The model is first tested for its suitability in capturing the basin characteristics with available data, and then, forecasts from six GCMs (general circulation model) with about half-a-century lead time to 2046-2064 and about one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change under three marker emission scenarios: A2, A1B and B 1. The results showed worsening water resources regime into the future.展开更多
Analysis of water supplies and demand over the past 50 years in the Gavkhuni River Basin(GRB) indicate that despite large investments in water resources development the basin remains just as vulnerable to drought as...Analysis of water supplies and demand over the past 50 years in the Gavkhuni River Basin(GRB) indicate that despite large investments in water resources development the basin remains just as vulnerable to drought as it always has been. During the period of analysis two transbasin diversions and a storage reservoir have been constructed which have more or less doubled the annual supply to water to the basin. But with each water resource development extractive capacity for irrigation, urban and industrial use has increased by the same amount, so that all new water is allocated as soon as it is available. The most recent developments, since 1980, have actually increased vulnerability to drought because extractive capacity is greater than average flow into the basin. Whenever demand exceeds supply all water is extracted from the basin and the tail end dries up. During the past 50 years flows into the salt pan at the downstream end of the basin have been negligible for more than half the time. Prospects for the future are bleak because once the current phase of water resources development is completed no further water supplies are likely, but demand continues to rise at a steady rate. Ultimately agriculture will have to concede water to urban, industrial and environmental demands.展开更多
文摘In order to examine the effects of the decrease of future precipitation on the eco-physiological characteristics of sea buckthorn (Hippophae rhamnoides Linn.) in Huangfuchuan Watershed in Nei Mongol, a water gradient experiment was conducted based on the four specially designed water supply levels, including normal precipitation, slight drought, drought and extreme drought. Results of ANOVE showed that different water gradients had a significant effect on (1) microhabitat factors, such as soil water content and soil temperature; (2) gas exchange, such as net photosynthetic rate, stomatal conductance and transpiration rate; (3) resource use efficiency; and (4) leaf water potential. Water use efficiency of H rhamnoides could increase under moderate water stress, i.e. drought condition, while its net photosynthetic rate and transpiration rate decreased. All kinds of eco-physiological characteristics proved H. rhamnoides seedlings under all water supplies were affected by water stress more or less and that mechanism of intrinsic physiological regulation in seedlings under the extreme drought conditions had the appearance of turbulence to a certain extent. Therefore, H rhamnoides seedlings in Huangfuchuan Watershed could not acclimate to extreme drought conditions.
基金Under the auspices of National Natural Science Foundation of China(No.41171403,41301586)China Postdoctoral Science Foundation(No.2013M540599,2014T70731)Program for New Century Excellent Talents in University(No.NCET-08-0057)
文摘Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.
基金Under the auspices of National Natural Science Foundation of China(No.51190093,51179149,51179149,51309098)National Basic Research Program of China(No.2011CB403306)+2 种基金Non-profit Industry Financial Program of Ministry of Water Resources(No.201301039)Program for New Century Excellent Talents in Ministry of Education(No.NCET-10-0933)Key Innovation Group of Science and Technology of Shaanxi Province(No.2012KCT-10)
文摘Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great significance to regional water resources planning and management. In this study, the impact of climate changes and human activities was initially qualitatively distinguished through a coupled water and energy budgets analysis, and then this effect was further separated by means of a quantitative estimation based on hydrological sensitivity analysis. The results show that: 1) precipitation, wind speed, potential evapotranspiration and runoff have a significantly decreasing trend, while temperature has a remarkably increasing tendency in the Weihe River Basin, China; 2) the major driving factor on runoff decrease in the 1970 s and 1990 s in the basin is climate changes compared with that in the baseline 1960 s, while that in the 1980 s and 2000 s is human activities. Compared with the results based on Variable Infiltration Capacity(VIC) model, the contributions calculated in this study have certain reliability. The results are of great significance to local water resources planning and management.
基金grants from the Deutsche Forschungs-gemeinschaft(DFG)support from the Aga Khan Development Network(AKDN)
文摘Water management in general and in the Indus Basin in particular is concerned with the energy-efficient transportation of hydrologically exploitable resources from the upper zone to climatically favourable areas where irrigation helps to supersede arid conditions for the cultivation of crops and watering of meadows.In other words:Human intervention sets the stage for the allocation of water from a wider catchment area in a smaller habitat where this resource is deficient.Emphasis on mountain irrigation practices is counteracted with developments in the forelands where different frame conditions prevail and peculiar development problems occur.In dealing with the importance of water from the mountain regions three dimensions have to be evaluated:1) natural factors and their validity for the environmental frame conditions and technological adaptation processes;2) social factors and their impact on culture,economy and equitability;3) institutional factors and their importance for sustainable growth and for the implementation of development projects.In the study of decentralized irrigation systems in high mountain regions of the Indus Basin a systems theoretical approach values the complexity of interrelationships between different systems elements.Human activities in arid mountain regions are restricted by limiting ecological factors and are characterized by certain utilization and adaptive strategies.
基金supported by the State Key Development Program for Basic Research of China (973 program (Grant No. 2010CB951002)the Natural Sciences Foundation of China (Grant No. 40871027)+1 种基金the Project from Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone (Grant No. XJYS0907-2011-03)the Knowledge Innovation project of Chinese Academy of Science (KZCX2-YW-334) for financial supports
文摘The main goal of this study was to assess the long-term impacts of global warming perturbation on water resources of the Kaidu River Basin in Northwest China. Temperature, precipitation and hydrology data during the past 29 years from 1979 to 2007 were collected and analyzed using parametric and non-parametric methods, the connection between temperature and precipitation by the combination of grey correlation analysis method and the hypothesis testing for trend of climate change. The results show a high increase in temperature in the study area as well as an extreme and highly variable hydrological regime in this region, where flash floods can exceed the total runoff from a sequence of years. These variations may be due to the geographical location of the Kaidu River Basin in arid zone. It also reveals that precipitation has a much greater impact on stream flow than that of temperature. The development of new approaches was proposed as responses to climate change in this arid region.
文摘Diyala River is the third largest tributary of the Tigris River running 445 km length and draining an area of 32,600 km2. The river is the major source of water supply for Diyala City for municipal, domestic, agriculture and other purposes. Diyala River Basin currently is suffering from water scarcity and contamination problems. Up-to-date studies have shown that blue and green waters of a basin have been demonstrating increasing variability contributing to more severe droughts and floods seemingly due to climate change. To obtain better understanding of the impacts of climate change on water resources in Diyala River Basin in near 2046-2064 and distant future 2080~2100, SWAT (soil and water assessment tool) was used. The model is first examined for its capability of capturing the basin characteristics, and then, projections from six GCMs (general circulation models) are incorporated to assess the impacts of climate change on water resources under three emission scenarios: A2, AIB and B1. The results showed deteriorating water resources regime into the future.
基金supported by the National Natural Science Foundation of China under Grant 40975041the National Basic Research Program of China under Grant 2009CB421407
文摘Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.
基金Supported by the Hohai University Scholarship Schemethe National Natural Science Foundation of China(Nos.41130639,51179045,41101017,412010208)the Innovation Program for Graduates in Jiangsu Province,China(No.CXZZ13_02)
文摘For sustainable water resource management,it is important to determine the relationship between streamfl ow and other variables that infl uence availability of water resources.However,many catchments do not have suffi cient data to allow for a more detailed study of these relationships.We faced a similar challenge in the Chengcun Basin(limited historical data: from 1986–1999); and therefore we used a new approach to overcome this.We found that,using nonparametric trend methods in conjunction with the climate elasticity analyses and the 2D visualization of hydrologic data,it is possible to assess the relationships between streamfl ow and other hydro-climatic variables.In the past,streamfl ow trends in the basin were more correlated with precipitation than with potential evapotranspiration(PET).In addition,there is a gradual shift in the hydrological regime of the catchment,which may affect the occurrence of available water resources and activities that depend on them.In addition,based on our climate sensitivity analyses,the streamfl ow is dependent and more sensitive to variations in precipitation than to PET(δQ=0.79δP+0.42δE; precipitation elasticity,ε P=1.32; PET elasticity,ε E=-2.10).Therefore pending more detailed studies,the use of our approach will provide a rapid means to assess the variation of water resources(streamfl ow)in a watershed.In the future,we hope to carry out related research in other watersheds and also perform a more detailed studies to improve upon the results of this study.
基金supported by the National Basic Research Program of China (973 Program,2012CB956202)the National Key Technology R&D Program of China(2012BAC22B04)+1 种基金the National Natural Science Foundation of China (41105048)the Special Fund for Meteorological scientific Research in the Public Interest (GYHY201106028)
文摘The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled soil moisture and runoff with limited observations in the basin suggests a general drying trend in simulated soil moisture,runoff,and precipitation-evaporation balance(P-E) in most areas of the Yellow River basin during the observation period.Furthermore,annual soil moisture,runoff,and P-E averaged over the entire basin have declined by 3.3%,82.2%,and 32.1%,respectively.Significant drying trends in soil moisture appear in the upper and middle reaches of the basin,whereas a significant trend in declining surface runoff and P-E occurred in the middle reaches and the southeastern part of the upper reaches.The overall decreasing water availability is characterized by large spatial and temporal variability.
基金supported by National Natural Science Foundation of China(Grant No.40730634)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Project(Grant No.SKLGP2009z006)
文摘Presently concepts and methods related to water resources conservation of mountain rivers are seriously insufficient,and its level is far from being adaptable to the development of a harmonious society.As mountain ecosystems play a key role in water resources conservation of mountain rivers,and the characteristics of mountain ecosystems and hydrologic features of mountain river follow strong temporal and spatial distribution,partition theory can be applied to the water resources conservation of mountain river.This theory observes the following partition principles:regional relativity,spatial continuity,integralcounty,meeting management needs,hierarchical principle,and comparability principle.And it lays equal emphasis on both water resources conservation and environmental protection,on both water quality conservation and water quantity protection,on the combination of water features,water cycle and water pollution.In the partition methods,index method and map superposition method will be applied in region partition.The example of region partition of water resources conservation in the upper reaches of the Yangtze River shows that the partition theory is practicable in water resources conservation of mountain rivers,and it provides a platform for future study in water resources conservation.
文摘Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy social and political demands through the construction of dams and irrigation systems. The reduction in freshwater quantity and the deterioration of water quality are the outcome of industrial inflows, agriculture and urban untreated wastewater. This study has been leaded to determine hydrological, water quality, seed bioassays and the lake fisheries' decreases throughout its historical tendencies (1980-2004) in relation to changes in water levels. Hydrological data and water samples for chemical analysis, inorganic nutrients and seed bioassay, were taken from 10 sites alongside the river and two sites from Lake Chapala in years 2005 and 2009, the WQINsF (National Sanitation Foundation Water Quality Index) was estimated. The dissolved oxygen along the river was from anoxic (0.4) to 7 mg/L and the lake had 6.75 mg/L to 7.36 mg/L; the river had highest nutrients variations, Ntot and Ptot 1 mg/L to 〉 10 mg/L. The lake had few physicochemical variations and the lowest nutrient concentrations; WQINsF (water quality index) in the river-lake system showed very bad-bad quality and contamination in river, bad quality-light contamination in lake. Seed bioassays showed inhibition of root elongation and declining fisheries when low water levels were presented. Chapala Lake had better physicochemical and limnological conditions because of the wind action and water column mixing; in contrast the river, high hidrological variations caused by water administration in middle basin.
文摘The Upper Blue Nile Basin, the highest sources of the Nile River flow through this area, is still under severe land degradation, which aggravates water scarcity. The productivity of subsistence farming is below 50% of the potential of agriculture, mainly because of inappropriate rainwater management. At farm level, rainwater is exposed to poor partitioning described as flooding, land degradation, siltation and water scarcity for domestic, irrigation, hydropower and environmental uses in the basin. Hence, it is one of the root causes of food-insecurity in the region. To reverse this situation and achieve increased rainwater productivity knowledge of rainfall partitioning at grassroots level is significantly important. However, rainwater partitioning and partitioning points are not clearly known by farmers in the area. Besides, understanding water-routes helps to manage rainwater with integrated water resources management (IWRM) processes. The objective of this study was to identify the knowledge gap of farmers and experts on rainwater partitioning that help for increased water productivity. Intensive monitoring and interviews have been carried out for 81 farmers and 22 local experts in three pilot sites. The interviewed farmers and experts are clearly aware of the runoff partitioning, since it is easily observable. While, only 10% of the farmers and 25% of experts know about evaporation partitioning, which is the largest compared to other losses. The paper gives recommendations for better understanding of rainfall partitioning points and management of water-routes at grassroots level to increase rainwater productivity and enhance food security in the area with IWRM processes.
文摘The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and groundwater". Case study: Ma river basin in Vietnam. The results were implemented: (i) data collection, fieldwork survey, synthesis and analysis of information and data; (ii) partitioning the influence degree of climate change and sea level rise to groundwater; (iii) determining criteria to select monitoring routes, location of monitoring groundwater in the condition of climate change and sea level rise and (iv) developing the monitoring system. The research's results have practical implications for the water resources management in the context of climate change and sea level rise in Ma river basin.
文摘An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of blue and green waters which could be due to climate change. In order to get a better understanding of the impacts of climate change on the water resources of the study area for near future as well as distant future, SWAT (soil and water assessment tool) model was applied. The model is first tested for its suitability in capturing the basin characteristics with available data, and then, forecasts from six GCMs (general circulation model) with about half-a-century lead time to 2046-2064 and about one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change under three marker emission scenarios: A2, A1B and B 1. The results showed worsening water resources regime into the future.
文摘Analysis of water supplies and demand over the past 50 years in the Gavkhuni River Basin(GRB) indicate that despite large investments in water resources development the basin remains just as vulnerable to drought as it always has been. During the period of analysis two transbasin diversions and a storage reservoir have been constructed which have more or less doubled the annual supply to water to the basin. But with each water resource development extractive capacity for irrigation, urban and industrial use has increased by the same amount, so that all new water is allocated as soon as it is available. The most recent developments, since 1980, have actually increased vulnerability to drought because extractive capacity is greater than average flow into the basin. Whenever demand exceeds supply all water is extracted from the basin and the tail end dries up. During the past 50 years flows into the salt pan at the downstream end of the basin have been negligible for more than half the time. Prospects for the future are bleak because once the current phase of water resources development is completed no further water supplies are likely, but demand continues to rise at a steady rate. Ultimately agriculture will have to concede water to urban, industrial and environmental demands.