Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm...Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.展开更多
Some novel techniques of computational fluid dynamics are used to establish a mathematical model for the open diversion channel with two embankments in river blocking.The technique of boundary fitted coordinate syste...Some novel techniques of computational fluid dynamics are used to establish a mathematical model for the open diversion channel with two embankments in river blocking.The technique of boundary fitted coordinate system is used to overcome the difficulties resulting from the complicated shapes of natural river boundaries;the method of alternating direction implicit finite difference scheme is used to solve the partial differential equations in the transformed plane;and the technique of moving boundary is used to deal with the river bed exposed to water surface.This model has been used to predict the flow characteristics in the blocking of the Yangtz river in the Three Gorge Project (TGP).Comparison between the computed and experimental data shows a satisfactory agreement.展开更多
A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and ...A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and local generators are employed to avoid loss and overlap of clock period.The ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 49.5dB(7.9ENOB) for an input of 62MHz at full speed of 125MHz,consuming only 71mW.It is implemented in 0.18μm CMOS technology with a core area of 0.45mm 2.展开更多
Taking an oxygen enriched side-blown furnace as the prototype,a hydraulic model was established according to the similarity principle.The influence of three factors on the gas-liquid two-phase flow was analyzed,i.e.th...Taking an oxygen enriched side-blown furnace as the prototype,a hydraulic model was established according to the similarity principle.The influence of three factors on the gas-liquid two-phase flow was analyzed,i.e.the airflow speed,the submerged depth and the downward angle of the nozzle.A numerical simulation of the hydraulic model was carried out trying to find the suitable turbulence model which can describe the side-blown two-phase flow correctly by comparing the simulation results with the experimental data.The experiment shows that the airflow speed has a great influence on the flow of the water.The submerged depth of the nozzle has a relatively smaller influence on the penetration depth and the surface fluctuation height in the liquid phase.When the nozzle is at a downward angle of 15°,the penetration depth and the surface fluctuation height are reduced.It is concluded that the numerical results with the realizable k-εturbulence model are the closest to the experiment for the penetration depth,the surface fluctuation height and the bubble scale.展开更多
The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and t...The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and tangential velocity components, the pressure and turbulence intensity distribution and droplet trajectories for a hydrocyclone of F type and a hydrocyclone proposed by the present authors. The flow field predictions are in qualitative agreement with the LDV measurements. The results show that the proposed hydrocyclone has better performance than the hydrocyclone of F type due to creating stronger centrifugal force and lower axial velocity.展开更多
The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological backg...The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.展开更多
The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the qu...The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.展开更多
Floods are one of the most common natural hazards occurring all around the world.However,the knowledge of the origins of a food and its possible magnitude in a given region remains unclear yet.This lack of understandi...Floods are one of the most common natural hazards occurring all around the world.However,the knowledge of the origins of a food and its possible magnitude in a given region remains unclear yet.This lack of understanding is particularly acute in mountainous regions with large degrees in Sichuan Province,China,where runoff is seldom measured.The nature of streamflow in a region is related to the time and spatial distribution of rainfall quantity and watershed geomorphology.The geomorphologic characteristics are the channel network and surrounding landscape which transform the rainfall input into an output hydrograph at the outlet of the watershed.With the given geomorphologic properties of the watershed,theoretically the hydrological response function can be determined hydraulically without using any recorded data of past rainfall or runoff events.In this study,a kinematic-wave-based geomorphologic instantaneous unit hydrograph (KW-GIUH) model was adopted and verified to estimate runoff in ungauged areas.Two mountain watersheds,the Yingjing River watershed and Tianquan River watershed in Sichuan were selected as study sites.The geomorphologic factors of the two watersheds were obtained by using a digital elevation model (DEM) based on the topographic database obtained from the Shuttle Radar Topography Mission of US's NASA.The tests of the model on the two watersheds were performed both at gauged and ungauged sites.Comparison between the simulated and observed hydrographs for a number of rainstorms at the gauged sites indicated the potential of the KW-GIUH model as a useful tool for runoff analysis in these regions.Moreover,to simulate possible concentrated rainstorms that could result in serious flooding in these areas,synthetic rainfall hyetographs were adopted as input to the KW-GIUH model to obtain the flow hydrographs at two ungauged sites for different return period conditions.Hydroeconomic analysis can be performed in the future to select the optimum design return period for determining the flood control work.展开更多
Based on the 1961-1990 observed daily precipitation in the Changjiang-Huaihe River Basin, the NCEP/NCAR reanalysis data, and the HadCM3 model data for IPCC SRES A1B climate projections, the simulation capabilities of ...Based on the 1961-1990 observed daily precipitation in the Changjiang-Huaihe River Basin, the NCEP/NCAR reanalysis data, and the HadCM3 model data for IPCC SRES A1B climate projections, the simulation capabilities of the BP-CCA downscaling approach for extreme precipitation indices of the current climate are assessed by applying canonical correlation analysis (CCA). In addition, future extreme precipitation indices in the middle and late 21st century are projected. The results show that simulation capability of the HadCM3 for regional climate characteristics can be effectively improved by the downscaling approach, with 30%-100% reduction of the relative errors of the climatological mean state of extreme precipitation indices. However, the downscaling results still show wetter winter and dryer summer than the observation. Under the SRES A1B emission scenario, frequency and intensity of extreme precipitation events are projected to increase, and the estimated increasing rate is higher for extreme precipitation indices than for mean precipitation index; and in summer than in winter. Extreme precipitations in the middle and late 21st century are expected to increase by 14% and 25% respectively in winter, and by 24% and 32% respectively in summer.展开更多
An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using...An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using SWASH,a non-hydrostatic numerical wave model.The nonlinear parameters(i.e.,asymmetry,skewness,and kurtosis) are calculated,and the empirical formulas for these parameters are presented as a function of the local Ursell number based on the present numerical data measured.In the shoaling area of the submerged sill,the nonlinear characteristics of waves are more obvious when waves propagate in the same direction as the currents than when waves propagate in the opposite direction.Whereas nonlinear parameters grow with the strengthening of the following currents over the crest,they tend to decrease as the adverse current velocity increases over the crest area of the submerged sill.展开更多
POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and ...POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and observational data were used to determine the sediment concentration, volume transport, heat flux and suspended matter flux between the Yellow Sea and the East China Sea. The conclusions obtained were that the volume and heat are transported northward through the 32°N section during each season; that in winter and autumn, total suspended matter is transported southward, and is larger in winter than in autumn. The reason is that the Yellow Sea Coastal Current is strong and always contains more suspend matter in winter and autumn. The seasonal suspended matter exchange between the Yellow Sea and the East China Sea are 0.58×10 7 tons in spring, 2.81×10 7 tons in summer, -2.60×10 7 tons in autumn and -3.40×10 7 tons in winter. Net flux of suspended matter from the Yellow Sea to the East China Sea is 2.61×10 7 tons every year.展开更多
The reflection and transmission of the level step to the water waves in the linear and continuous layer liquid were studied in this paper. Based on the matching method of the eigenfunction and a Boussinesq approximati...The reflection and transmission of the level step to the water waves in the linear and continuous layer liquid were studied in this paper. Based on the matching method of the eigenfunction and a Boussinesq approximation, the analytical expression of the diffraction was obtained and the computing methods of the reflection and transmission en- ergy of the level step were proposed. For the incident wave with a frequency greater than that of the flotage, there is only one mode of plane traveling wave in the flow field. In the range of this greater frequency, the linear and continuous delamination effect will affect the reflection and transmission energy of the floating rectangular box. When the fre- quency of the incident wave is less than the flotage frequency, the energy of the plane traveling wave with infinite modes in the flow field will change into the energy of different modes for each incident wave of different modes.展开更多
In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD)...In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD) software FLUENT to simulate steady cavitating flow. At a fixed attack angle, pressure distributions and volume fractions of vapor at different cavitation numbers were simulated, and the results on foil sections agreed well with experimental data. In addition, at the various cavitation numbers, the vapor fractions at different attack angles were also predicted. The vapor region moved towards the front of the airfoil and the length of the cavity grew with increased attack angle. The results show that this method of applying FLUENT to simulate cavitation is reliable.展开更多
The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the ground...The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the groundwater level. The relationship among the calculation error of groundwater level, the pumping rate, the limit of iteration convergence error, the calculation time, and the aquifer parameters were discussed by using an ideal model. Finally, the water yield of Dianzi iron mine was predicted using the testified numerical model. It is indicated that the calculation error of groundwater level is related to the limit of iteration convergence error, the calculation time and the aquifer parameters, but not to the pumping rate and the variation of groundwater level.展开更多
Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodel...Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.展开更多
To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) metho...To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) methods. A distributed hydrological model was developed, and watershed parameters were determined based on satellite imagery, digital terrain models, digital maps and field investigations. Two types of erosion control measures were investigated: the variation of vegetation covers and the change of cultivation techniques. Seven scenarios were considered for the test watershed. The results show: (1) while the de-vegetation results in the increase of peak discharge, the improve of vegetation covers decreases peak discharge at watershed scale; (2) by both improving vegetation cover and enhancing terrace-cultivation technology, the peak discharge is reduced and the peak flow arrival time is delayed; (3) attention should be attached to both early warning system and measures changing the underlying surface and conveyance systems.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
By rational hypothesis of fluid flow pattern, applied the law of conservation of energy and integrated the laboratory test results, finished the prediction by the theoretical model of cir-culation velocity of hydrauli...By rational hypothesis of fluid flow pattern, applied the law of conservation of energy and integrated the laboratory test results, finished the prediction by the theoretical model of cir-culation velocity of hydraulic brake which is important parameter. Thus provide the theoritical basis for hydraulic brake of bblt conveyor whose research has just been started.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52074130)the Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education。
文摘Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.
文摘Some novel techniques of computational fluid dynamics are used to establish a mathematical model for the open diversion channel with two embankments in river blocking.The technique of boundary fitted coordinate system is used to overcome the difficulties resulting from the complicated shapes of natural river boundaries;the method of alternating direction implicit finite difference scheme is used to solve the partial differential equations in the transformed plane;and the technique of moving boundary is used to deal with the river bed exposed to water surface.This model has been used to predict the flow characteristics in the blocking of the Yangtz river in the Three Gorge Project (TGP).Comparison between the computed and experimental data shows a satisfactory agreement.
文摘A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and local generators are employed to avoid loss and overlap of clock period.The ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 49.5dB(7.9ENOB) for an input of 62MHz at full speed of 125MHz,consuming only 71mW.It is implemented in 0.18μm CMOS technology with a core area of 0.45mm 2.
基金Project(2018YFC1901606)supported by the National Key R&D Program of China.
文摘Taking an oxygen enriched side-blown furnace as the prototype,a hydraulic model was established according to the similarity principle.The influence of three factors on the gas-liquid two-phase flow was analyzed,i.e.the airflow speed,the submerged depth and the downward angle of the nozzle.A numerical simulation of the hydraulic model was carried out trying to find the suitable turbulence model which can describe the side-blown two-phase flow correctly by comparing the simulation results with the experimental data.The experiment shows that the airflow speed has a great influence on the flow of the water.The submerged depth of the nozzle has a relatively smaller influence on the penetration depth and the surface fluctuation height in the liquid phase.When the nozzle is at a downward angle of 15°,the penetration depth and the surface fluctuation height are reduced.It is concluded that the numerical results with the realizable k-εturbulence model are the closest to the experiment for the penetration depth,the surface fluctuation height and the bubble scale.
基金Supported by the Special Funds for Major State Basic Research (No. 1999-0222-08).
文摘The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and tangential velocity components, the pressure and turbulence intensity distribution and droplet trajectories for a hydrocyclone of F type and a hydrocyclone proposed by the present authors. The flow field predictions are in qualitative agreement with the LDV measurements. The results show that the proposed hydrocyclone has better performance than the hydrocyclone of F type due to creating stronger centrifugal force and lower axial velocity.
基金Projects(51374093,51104058)supported by the National Natural Science Foundation of ChinaProject(2013CB227903)supported by the National Basic Research Program of China
文摘The water-inrush mechanism of strong water-guide collapse column in coal seam is studied based on the establishment of geological and mathematical models of "triangle" water-inrush mode. The geological background of Shuangliu mine is considered a prototype, similar simulation tests are adopted to analyze the water-inrush rules under this model, and the formation of water-guide channel and water-inrush process is investigated by examining the changes in rock resistivity. This work also uses the coupled cloud image derived from numerical simulation software to verify the results of simulation test. Results show that the numerical simulation of "triangle" water-inrush mode is consistent with the similar simulation. The "triangle" seepage area, which is located at the bottom of collapse columns and is connected to aquifer, is caused by the altered seepage direction and strengthened seepage actions after the overlapping of hydraulic transverse seepage in collapse column and hydraulic vertical seepage flow in aquifer. Under "triangle"water-inrush model, water-guide channel is formed by the communication between plastic failure zone of working face baseplate and"triangular" seepage area. Accordingly, the threatening water-inrush distance between working face and collapse column increases by 20 m compared with that of theoretical calculation.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB409903)the National Natural Science Foundation of China (Grant No. 50739002)
文摘The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.
基金supported by the key project of the National Natural Science Foundation of China (NSFC No. 50739002)the National Science Council of Taibei of China (NSC 97-2625-M-019-001)+1 种基金the Open Research Fund Program of State key Laboratory of Hydraulics and River Engineering,Sichuan University,China (No. 1001)Financial supports from the above organizations are fully acknowledged
文摘Floods are one of the most common natural hazards occurring all around the world.However,the knowledge of the origins of a food and its possible magnitude in a given region remains unclear yet.This lack of understanding is particularly acute in mountainous regions with large degrees in Sichuan Province,China,where runoff is seldom measured.The nature of streamflow in a region is related to the time and spatial distribution of rainfall quantity and watershed geomorphology.The geomorphologic characteristics are the channel network and surrounding landscape which transform the rainfall input into an output hydrograph at the outlet of the watershed.With the given geomorphologic properties of the watershed,theoretically the hydrological response function can be determined hydraulically without using any recorded data of past rainfall or runoff events.In this study,a kinematic-wave-based geomorphologic instantaneous unit hydrograph (KW-GIUH) model was adopted and verified to estimate runoff in ungauged areas.Two mountain watersheds,the Yingjing River watershed and Tianquan River watershed in Sichuan were selected as study sites.The geomorphologic factors of the two watersheds were obtained by using a digital elevation model (DEM) based on the topographic database obtained from the Shuttle Radar Topography Mission of US's NASA.The tests of the model on the two watersheds were performed both at gauged and ungauged sites.Comparison between the simulated and observed hydrographs for a number of rainstorms at the gauged sites indicated the potential of the KW-GIUH model as a useful tool for runoff analysis in these regions.Moreover,to simulate possible concentrated rainstorms that could result in serious flooding in these areas,synthetic rainfall hyetographs were adopted as input to the KW-GIUH model to obtain the flow hydrographs at two ungauged sites for different return period conditions.Hydroeconomic analysis can be performed in the future to select the optimum design return period for determining the flood control work.
基金supported by the National Natural Science Foundation (No. 40875058)the National Key Basic Research Program (No. 2012CB955200) of Chinafunded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Edusation Institutions
文摘Based on the 1961-1990 observed daily precipitation in the Changjiang-Huaihe River Basin, the NCEP/NCAR reanalysis data, and the HadCM3 model data for IPCC SRES A1B climate projections, the simulation capabilities of the BP-CCA downscaling approach for extreme precipitation indices of the current climate are assessed by applying canonical correlation analysis (CCA). In addition, future extreme precipitation indices in the middle and late 21st century are projected. The results show that simulation capability of the HadCM3 for regional climate characteristics can be effectively improved by the downscaling approach, with 30%-100% reduction of the relative errors of the climatological mean state of extreme precipitation indices. However, the downscaling results still show wetter winter and dryer summer than the observation. Under the SRES A1B emission scenario, frequency and intensity of extreme precipitation events are projected to increase, and the estimated increasing rate is higher for extreme precipitation indices than for mean precipitation index; and in summer than in winter. Extreme precipitations in the middle and late 21st century are expected to increase by 14% and 25% respectively in winter, and by 24% and 32% respectively in summer.
基金supported financially by the National Nature Science Foundation(Nos.51422901,51679031)a Foundation for the Author of National Excellent Doctoral Dissertation of P.R.China(No.201347)+3 种基金National Key Research and Development Program(No.2017YFC 1404205)High-Tech Ship Research Projects Sponsored by the Ministry of Industry and Information Technology(MIIT) of Chinathe Fundamental Research Funds for the Central Universities(No.DUT16TD08)State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University(HESS-1610)
文摘An investigation of the effects of a uniform current strength direction(following or opposing wave propagation) on the nonlinear transformation of irregular waves over a submerged trapezoidal sill is carried out using SWASH,a non-hydrostatic numerical wave model.The nonlinear parameters(i.e.,asymmetry,skewness,and kurtosis) are calculated,and the empirical formulas for these parameters are presented as a function of the local Ursell number based on the present numerical data measured.In the shoaling area of the submerged sill,the nonlinear characteristics of waves are more obvious when waves propagate in the same direction as the currents than when waves propagate in the opposite direction.Whereas nonlinear parameters grow with the strengthening of the following currents over the crest,they tend to decrease as the adverse current velocity increases over the crest area of the submerged sill.
文摘POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and observational data were used to determine the sediment concentration, volume transport, heat flux and suspended matter flux between the Yellow Sea and the East China Sea. The conclusions obtained were that the volume and heat are transported northward through the 32°N section during each season; that in winter and autumn, total suspended matter is transported southward, and is larger in winter than in autumn. The reason is that the Yellow Sea Coastal Current is strong and always contains more suspend matter in winter and autumn. The seasonal suspended matter exchange between the Yellow Sea and the East China Sea are 0.58×10 7 tons in spring, 2.81×10 7 tons in summer, -2.60×10 7 tons in autumn and -3.40×10 7 tons in winter. Net flux of suspended matter from the Yellow Sea to the East China Sea is 2.61×10 7 tons every year.
文摘The reflection and transmission of the level step to the water waves in the linear and continuous layer liquid were studied in this paper. Based on the matching method of the eigenfunction and a Boussinesq approximation, the analytical expression of the diffraction was obtained and the computing methods of the reflection and transmission en- ergy of the level step were proposed. For the incident wave with a frequency greater than that of the flotage, there is only one mode of plane traveling wave in the flow field. In the range of this greater frequency, the linear and continuous delamination effect will affect the reflection and transmission energy of the floating rectangular box. When the fre- quency of the incident wave is less than the flotage frequency, the energy of the plane traveling wave with infinite modes in the flow field will change into the energy of different modes for each incident wave of different modes.
文摘In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD) software FLUENT to simulate steady cavitating flow. At a fixed attack angle, pressure distributions and volume fractions of vapor at different cavitation numbers were simulated, and the results on foil sections agreed well with experimental data. In addition, at the various cavitation numbers, the vapor fractions at different attack angles were also predicted. The vapor region moved towards the front of the airfoil and the length of the cavity grew with increased attack angle. The results show that this method of applying FLUENT to simulate cavitation is reliable.
文摘The purpose of this paper is to discuss the influential factors of iteration accuracy when we use iteration to determine the numerical model for predicting water yield of deep drawdown mines and calculating the groundwater level. The relationship among the calculation error of groundwater level, the pumping rate, the limit of iteration convergence error, the calculation time, and the aquifer parameters were discussed by using an ideal model. Finally, the water yield of Dianzi iron mine was predicted using the testified numerical model. It is indicated that the calculation error of groundwater level is related to the limit of iteration convergence error, the calculation time and the aquifer parameters, but not to the pumping rate and the variation of groundwater level.
基金Supported by the 12th Five-Year Project of Science and Technology of China National Offshore Oil Corporation “Development of Underwater Oil Spill Numerical Simulation in Deep Water”(No.CNOOC-KJ 125 ZDXM 00 000 00 NFCY 2011-03)
文摘Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.
文摘To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) methods. A distributed hydrological model was developed, and watershed parameters were determined based on satellite imagery, digital terrain models, digital maps and field investigations. Two types of erosion control measures were investigated: the variation of vegetation covers and the change of cultivation techniques. Seven scenarios were considered for the test watershed. The results show: (1) while the de-vegetation results in the increase of peak discharge, the improve of vegetation covers decreases peak discharge at watershed scale; (2) by both improving vegetation cover and enhancing terrace-cultivation technology, the peak discharge is reduced and the peak flow arrival time is delayed; (3) attention should be attached to both early warning system and measures changing the underlying surface and conveyance systems.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘By rational hypothesis of fluid flow pattern, applied the law of conservation of energy and integrated the laboratory test results, finished the prediction by the theoretical model of cir-culation velocity of hydraulic brake which is important parameter. Thus provide the theoritical basis for hydraulic brake of bblt conveyor whose research has just been started.