For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res...For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.展开更多
In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copp...In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copper complex. In the simulation, the Eulerian–Eulerian approach was used for solid and liquid phases, the latter being water. In this approach, nine continuous phases were considered for the solid particles with different sizes and one continuous phase for water. The continuity and momentum equations with inclusion of buoyancy and drag forces were solved by the finite volume method. The k–e RNG turbulence model was used for modeling of turbulency. There was a good agreement between the simulation results and the experimental data. After validation of the model accuracy, the effect of inlet solid percentage, pulp inlet velocity, rod inserting in the middle of the hydrocyclone and apex diameter on hydrocyclone performance was investigated. The results showed that by decreasing the inlet solid percentage and increasing the pulp inlet velocity, the efficiency of hydrocyclone increased. Decreasing the apex diameter caused an increase in the hydrocyclone efficiency.展开更多
The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and t...The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and tangential velocity components, the pressure and turbulence intensity distribution and droplet trajectories for a hydrocyclone of F type and a hydrocyclone proposed by the present authors. The flow field predictions are in qualitative agreement with the LDV measurements. The results show that the proposed hydrocyclone has better performance than the hydrocyclone of F type due to creating stronger centrifugal force and lower axial velocity.展开更多
Along with economic development, river pollution has become a serious phenomenon. It's rational to simulate variation of pollutants by using water quality model. Thus, relevant departments could take appropriate meas...Along with economic development, river pollution has become a serious phenomenon. It's rational to simulate variation of pollutants by using water quality model. Thus, relevant departments could take appropriate measures to improve the water environment. However, the traditional image of mathematical modeling is not intuitive. The advantage of WebGIS is the ability of visualization on web browser by the combination ofgeospatial data and pollution attribute data.展开更多
基金Projects(50974033,51104035)supported by the National Natural Science Foundation of China
文摘For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.
文摘In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copper complex. In the simulation, the Eulerian–Eulerian approach was used for solid and liquid phases, the latter being water. In this approach, nine continuous phases were considered for the solid particles with different sizes and one continuous phase for water. The continuity and momentum equations with inclusion of buoyancy and drag forces were solved by the finite volume method. The k–e RNG turbulence model was used for modeling of turbulency. There was a good agreement between the simulation results and the experimental data. After validation of the model accuracy, the effect of inlet solid percentage, pulp inlet velocity, rod inserting in the middle of the hydrocyclone and apex diameter on hydrocyclone performance was investigated. The results showed that by decreasing the inlet solid percentage and increasing the pulp inlet velocity, the efficiency of hydrocyclone increased. Decreasing the apex diameter caused an increase in the hydrocyclone efficiency.
基金Supported by the Special Funds for Major State Basic Research (No. 1999-0222-08).
文摘The fluid flow and oil-water separation were simulated using a Reynolds stress transport equation model of turbulence in water flow and a stochastic model of oil droplet motion. Simulation results give the axial and tangential velocity components, the pressure and turbulence intensity distribution and droplet trajectories for a hydrocyclone of F type and a hydrocyclone proposed by the present authors. The flow field predictions are in qualitative agreement with the LDV measurements. The results show that the proposed hydrocyclone has better performance than the hydrocyclone of F type due to creating stronger centrifugal force and lower axial velocity.
文摘Along with economic development, river pollution has become a serious phenomenon. It's rational to simulate variation of pollutants by using water quality model. Thus, relevant departments could take appropriate measures to improve the water environment. However, the traditional image of mathematical modeling is not intuitive. The advantage of WebGIS is the ability of visualization on web browser by the combination ofgeospatial data and pollution attribute data.