A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-C...A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.展开更多
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter...In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.展开更多
This paper presented a method to create artificial fractures along the existing gas drainage borehole and increase the permeability of the coalbed using a high pressure waterjet cutting system.The field work conducted...This paper presented a method to create artificial fractures along the existing gas drainage borehole and increase the permeability of the coalbed using a high pressure waterjet cutting system.The field work conducted in Rujigou Colliery, Shenhua Ningxia Coal Group demonstrate that the coalbed permeability is increased, and accordingly, gas drainage efficiency is improved up to 3 to 6 times over the traditional methods using high pressure waterjet technique.Also, based on the monitoring data, the conceptual model for gas drainage process associated with different mining activities has been proposed, and few major advantages using waterjet assistance method have been identified.展开更多
Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage a...Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage and geological hazards, such as rock falls. These archaeological sites suffered deterioration and failure of some parts. Environmental hazards are the main agent responsible for the monument degrading knowledge of intensity of environmental hazards together with their aggressiveness characteristics surrounding the monumentally area which is important during all phases restoration process (both previous and to be executed in situ). The main geo-environmental hazards which affect the monuments under investigation; weathering, air pollution, seismic activity.展开更多
The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsome...The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H20 molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H20 molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H20 molecules on the silica surface block the hopping of helium molecules.展开更多
基金Project(2013CB228005) supported by the National Program on Key Fundamental Research Project of ChinaProject(14ZB0047) supported by the Department of Education of Sichuan Province,China
文摘A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.
基金Supported by Tianjin Construction Committee Technology Project (No2007-37)
文摘In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.
文摘This paper presented a method to create artificial fractures along the existing gas drainage borehole and increase the permeability of the coalbed using a high pressure waterjet cutting system.The field work conducted in Rujigou Colliery, Shenhua Ningxia Coal Group demonstrate that the coalbed permeability is increased, and accordingly, gas drainage efficiency is improved up to 3 to 6 times over the traditional methods using high pressure waterjet technique.Also, based on the monitoring data, the conceptual model for gas drainage process associated with different mining activities has been proposed, and few major advantages using waterjet assistance method have been identified.
文摘Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage and geological hazards, such as rock falls. These archaeological sites suffered deterioration and failure of some parts. Environmental hazards are the main agent responsible for the monument degrading knowledge of intensity of environmental hazards together with their aggressiveness characteristics surrounding the monumentally area which is important during all phases restoration process (both previous and to be executed in situ). The main geo-environmental hazards which affect the monuments under investigation; weathering, air pollution, seismic activity.
基金This work was supported by the Fhndamental Research Funds for the Central Universities (No.XDJK2015C002) and the National Natural Science Foundation of China (No.51402243). Special thanks are given to Prof. H. J. M Bouwmeester and Dr. N.E. Benes from University of Twente for fruitful discussion.
文摘The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H20 molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H20 molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H20 molecules on the silica surface block the hopping of helium molecules.