In order to rescue a trapped miner and clean out roadways quickly in a high gas mine shaft after a mining mishap, a special portable cold-cutting equipment is needed, the main technology parameters were calculated acc...In order to rescue a trapped miner and clean out roadways quickly in a high gas mine shaft after a mining mishap, a special portable cold-cutting equipment is needed, the main technology parameters were calculated according to the advanced cold-cutting technology of high pressure abrasive water jet and the portable mixed abrasive water jet equipment (PAWE) was designed to meet the needs of emergency rescue in high gas mine shafts. Tested the PAWE in a high gas environment, and the result shows that the maximum cutting depth of solid iron pipe is 18 mm and the recoilforce of the sprayer is 28.9 N under the conditions that actual cutting pressure is 29 MPa, starting target distance is 10 ram, cutting speed is 180 mm/min and concentration of abrasive is 32%. The course of the experiment in the high gas environment was smooth and continuous, without any explosion. The PAWE is easy to move and operate, but the nozzle which was worn badly in the sprayer should be changed every 8 minutes.展开更多
Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pr...Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pre-drainage.This study chose the common sandstone and silicon limestone as the rock sample.A series of experiments were completed in the case of dry drilling,existing technology drilling,combined drilling with high pressure water jet and combined drilling with abrasive water jet,respectively.The drilling efficiency and performance were contrasted and analyzed in detail.The results indicate that it is better to choose the method of combined drilling with the high-pressure water jet for soft rocks.The method of combined drilling with abrasive water jet is feasible for the hard rock drilling and has higher drilling efficiency and performance.In this paper,compared with the existing technology,the drilling depth has increased by about 65%,the axial force and torque have reduced by about 14%and 17%,respectively,and the drill wear reduces obviously in the same conditions.展开更多
Abrasive waterjets (AWJs) can be used in extreme mining conditions for hard rock destruction, due to their ability to effectively cut difficult-to-machine materials with an absence of dust formation. They can also b...Abrasive waterjets (AWJs) can be used in extreme mining conditions for hard rock destruction, due to their ability to effectively cut difficult-to-machine materials with an absence of dust formation. They can also be used for explosion, intrinsic, and fire safety. Every destructible material can be considered as either ductile or brittle in terms of its fracture mechanics. Thus, there is a need for a method to predict the efficiency of cutting with AWJs that is highly accurate irrespective of material. This problem can be solved using the energy conservation approach, which states the proportionality between the material removal volume and the kinetic energy of AWJs. This paper describes a method based on this approach, along with recommendations on reaching the most effective level of destruction. Recommendations are provided regarding rational ranges of values for the relation of abrasive flow rate to water flow rate, standoff distance, and size of abrasive particles. I also provide a parameter to establish the threshold conditions for a material's destruction initiation based on the temporary-structural approach of fracture mechanics.展开更多
Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and t...Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and the rock particles. The recycling abrasive particles were then dried and sieved for determination of their disintegration behaviors. Before each cutting with recycling abrasives, the abrasive particles less than 106 ?m were screened out. It is revealed that a considerable amount of used abrasives can be effectively reused in the rock cutting. The reusabilities of abrasives are determined as 81.77%, 57.50%, 34.37% and 17.72% after the first, second, third and fourth cuttings, respectively. Additionally, it is determined that recycling must be restricted three times due to the excessive disintegration of abrasives with further recycling. Moreover, it is concluded that cutting depth, kerf width and surface roughness decreases with recycling. No clear trend is found between the kerf taper angle and recycling. Particle size distribution is determined as an important parameter for improving the cutting performance of recycling abrasives.展开更多
In order to expand the application range of the classic Topographic Index model(TOPMODEL) and develop a more appropriate submodel of hydrological processes for use in the land surface model, two types of TOPMODEL are ...In order to expand the application range of the classic Topographic Index model(TOPMODEL) and develop a more appropriate submodel of hydrological processes for use in the land surface model, two types of TOPMODEL are investigated, one with saturated hydraulic conductivity change with depth obeying exponential law(classical e-TOPMODEL or e-TOPMODEL for short) and the other obeying general power law(general p-TOPMODEL or p-TOPMODEL for short). Using observation date in the Suomo River catchment located in the upper reaches of the Yangtze River, the sensitivity study of the p-TOPMODEL was conducted and the simulated results from the model were examined and evaluated first, and then the results were compared with the results from the e-TOPMODEL to find the similarities and differences between the two types of models. The main conclusions obtained from the above studies are(1) topographic index and its distribution derived from the p-TOPPMODEL for the Suomo Basin are sensitive to changes of parameter n and m;(2) changes of n and m have impacts on the simulation results of various hydrological components(such as daily runoff, monthly averaged runoff, monthly averaged surface runoff and subsurface runoff), but have the weaker impacts on forty-year averaged total runoff; and(3) for the same value of m, the simulated results of e-TOPMODEL display higher surface runoff and lower subsurface runoff than the general p-TOPMODEL does but multi-year averaged total runoffs produced from the two types of TOPMODEL show insignificant difference. The differences between the two types of models indicate that it is necessary to pay close attention to correct selection from different hydrological models for use in land surface model development. The result mentioned above is useful to provide some referential information for the model selection.展开更多
文摘In order to rescue a trapped miner and clean out roadways quickly in a high gas mine shaft after a mining mishap, a special portable cold-cutting equipment is needed, the main technology parameters were calculated according to the advanced cold-cutting technology of high pressure abrasive water jet and the portable mixed abrasive water jet equipment (PAWE) was designed to meet the needs of emergency rescue in high gas mine shafts. Tested the PAWE in a high gas environment, and the result shows that the maximum cutting depth of solid iron pipe is 18 mm and the recoilforce of the sprayer is 28.9 N under the conditions that actual cutting pressure is 29 MPa, starting target distance is 10 ram, cutting speed is 180 mm/min and concentration of abrasive is 32%. The course of the experiment in the high gas environment was smooth and continuous, without any explosion. The PAWE is easy to move and operate, but the nozzle which was worn badly in the sprayer should be changed every 8 minutes.
基金supported by the Fundamental Research Funds for the Central University (Nos.CDJZR10248801,CDJZR122488 01)the National Natural Science Foundation of China (No.51104191)
文摘Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pre-drainage.This study chose the common sandstone and silicon limestone as the rock sample.A series of experiments were completed in the case of dry drilling,existing technology drilling,combined drilling with high pressure water jet and combined drilling with abrasive water jet,respectively.The drilling efficiency and performance were contrasted and analyzed in detail.The results indicate that it is better to choose the method of combined drilling with the high-pressure water jet for soft rocks.The method of combined drilling with abrasive water jet is feasible for the hard rock drilling and has higher drilling efficiency and performance.In this paper,compared with the existing technology,the drilling depth has increased by about 65%,the axial force and torque have reduced by about 14%and 17%,respectively,and the drill wear reduces obviously in the same conditions.
文摘Abrasive waterjets (AWJs) can be used in extreme mining conditions for hard rock destruction, due to their ability to effectively cut difficult-to-machine materials with an absence of dust formation. They can also be used for explosion, intrinsic, and fire safety. Every destructible material can be considered as either ductile or brittle in terms of its fracture mechanics. Thus, there is a need for a method to predict the efficiency of cutting with AWJs that is highly accurate irrespective of material. This problem can be solved using the energy conservation approach, which states the proportionality between the material removal volume and the kinetic energy of AWJs. This paper describes a method based on this approach, along with recommendations on reaching the most effective level of destruction. Recommendations are provided regarding rational ranges of values for the relation of abrasive flow rate to water flow rate, standoff distance, and size of abrasive particles. I also provide a parameter to establish the threshold conditions for a material's destruction initiation based on the temporary-structural approach of fracture mechanics.
文摘Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and the rock particles. The recycling abrasive particles were then dried and sieved for determination of their disintegration behaviors. Before each cutting with recycling abrasives, the abrasive particles less than 106 ?m were screened out. It is revealed that a considerable amount of used abrasives can be effectively reused in the rock cutting. The reusabilities of abrasives are determined as 81.77%, 57.50%, 34.37% and 17.72% after the first, second, third and fourth cuttings, respectively. Additionally, it is determined that recycling must be restricted three times due to the excessive disintegration of abrasives with further recycling. Moreover, it is concluded that cutting depth, kerf width and surface roughness decreases with recycling. No clear trend is found between the kerf taper angle and recycling. Particle size distribution is determined as an important parameter for improving the cutting performance of recycling abrasives.
基金supported by the National Natural Science Foundation of China(Grant Nos.41030106 and 41075060)
文摘In order to expand the application range of the classic Topographic Index model(TOPMODEL) and develop a more appropriate submodel of hydrological processes for use in the land surface model, two types of TOPMODEL are investigated, one with saturated hydraulic conductivity change with depth obeying exponential law(classical e-TOPMODEL or e-TOPMODEL for short) and the other obeying general power law(general p-TOPMODEL or p-TOPMODEL for short). Using observation date in the Suomo River catchment located in the upper reaches of the Yangtze River, the sensitivity study of the p-TOPMODEL was conducted and the simulated results from the model were examined and evaluated first, and then the results were compared with the results from the e-TOPMODEL to find the similarities and differences between the two types of models. The main conclusions obtained from the above studies are(1) topographic index and its distribution derived from the p-TOPPMODEL for the Suomo Basin are sensitive to changes of parameter n and m;(2) changes of n and m have impacts on the simulation results of various hydrological components(such as daily runoff, monthly averaged runoff, monthly averaged surface runoff and subsurface runoff), but have the weaker impacts on forty-year averaged total runoff; and(3) for the same value of m, the simulated results of e-TOPMODEL display higher surface runoff and lower subsurface runoff than the general p-TOPMODEL does but multi-year averaged total runoffs produced from the two types of TOPMODEL show insignificant difference. The differences between the two types of models indicate that it is necessary to pay close attention to correct selection from different hydrological models for use in land surface model development. The result mentioned above is useful to provide some referential information for the model selection.